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Abstract- In this paper, we present the well-known shifting tool 

for proving the lower bounds of the distributed clock 

synchronization algorithms. With using this mathematical tool, we 

prove the lower bound on the clock synchronization error between 

two processors in a distributed system. 

 
Index Terms- Distributed Clock Synchronization, Lower Bounds, 

Shifting. 

I.  INTRODUCTION 

istributed systems consist of a collection of distinct 

processes (called nodes) which are spatially separated 

and which communicate with one another by exchanging 

messages [1]. The clocks of the nodes tick at different rates 

and as a result these clocks can drift apart. Thus, the clocks in 

the distributed system may not remain always synchronized 

although they might be synchronized when they start.  

The lack of global notion of time poses serious problems 

for the correct operation of the distributed applications and 

protocols which need synchronized clocks. Consequently, it is 

mandatory to provide a distributed clock synchronization 

algorithm whose objective is to ensure that the nodes are able 

to acquire a common notion of time. Clock synchronization 

algorithms are based on exchanging clock information among 

the nodes and try to eliminate the effects of non-determinism 

in the message delay and data processing time. 

In this paper, we are interested in the lower bound on the 

clock synchronization error between two processors in a 

distributed system [3][4]. The system model which we use in 

the rest of this paper is presented in Section II. We prove the 

best achievable clock synchronization error in a distributed 

system in Section III. Finally, Section IV is the conclusion. 

II.  THE SYSTEM MODEL 

In this section, we describe the formal model which will be 

used for the analysis of the clock synchronization algorithms. 

We describe the model of communication and clocks in the 

system.  

A.  The Clock Model 

We assume that each node in the distributed system is 

equipped with a physical clock which is used for measuring 

the time. We denote the reading of physical clock at real time 

t as )(tH . The rate )(th  of the physical clock is the first 

derivate of )(tH . The clock drift )(t  occurs where the rate 

of the physical clock is different from the standard rate 1. 

dt
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We assume that the physical clocks of the nodes have 

bounded drifts: 

  1)(1 t                                                        (3)                                         

A clock synchronization algorithm cannot directly modify 

physical clocks and alternatively it uses the physical clock 

and the messages it receives from the other nodes to compute 

a logical clock value )(tL . We assume that nodes in the 

system also maintain a logical clock. The logical clock is not 

allowed to run backwards. The clock synchronization 

algorithm can either increase the logical clock or leave it at 

the current value.  

B.  The Communication Model 

We consider a set of n nodes located in the Euclidean plane 

that communicate with each other through wireless 

broadcasts by exchanging messages. We assume that there 

exists a path between every pair of nodes which means 

communication network is connected. We assume that each 

link is reliable, FIFO, symmetrical and has bounded delay. 

We model communication network as a graph G={V,E,L,H} 

where V={1..n} represents the nodes and EVxV represents 

the links between the nodes. Any node i can communicate 

with any node to which it is directly connected and these 

nodes are referred to as the neighbors of that node, which is 

denoted by N. L(i,j) denotes the minimum message delay on 

the edge connecting nodes i and j and H(i,j) denotes the 

maximum message delay. The difference H(i,j)- L(i,j) is the 

uncertainty on that edge.  

C.  The System of Nodes with Clocks 

Occurrences that take place in the system are called events 

and are denoted by . We assume that the events in the 

system are computation events and delivery events 

representing the delivery of message between nodes. A 

history  of a node contains pairs ))(,( tH  for all events 

and their hardware clock readings at the real-time which the 

event occurred. An execution   is a set of n histories, one for 

each node. An execution  is admissable for the 

communication network G if every message between any two 

nodes has delay within the interval [L(i,j),H(i,j)]. Two 

executions 
1 and 

2 are indistinguishable (equivalent) if 

each node in the system has the same history in 
1 and in

2 .  

D.  The Clock Synchronization Problem 

Given the formal system definition, we now formally state 

the clock synchronization problem. The clock 

synchronization problem deals with the internal 

synchronization of the nodes and states the precision 

requirement on the difference between the logical clock 

values of any two nodes which is called the global skew.  
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Definition 1. Achieving  -Synchronized Clocks: In every 

execution that is admissable for G, there exists a real time 
et  

such that the algorithm has terminated and for all nodes i and 

j and all 
ett  , it holds that  )()( tLtL ji

. 

III.  THE BEST ACHIEVABLE CLOCK SYNCHRONIZATION ERROR 

After presenting the system model, we will now focus on 

the best achievable clock synchronization error in a system 

with only two processors p and q. We will define the shifting 

lemma which is an important mathematical tool for proving 

the best achievable synchronization error for the clock 

synchronization algorithms. With shifting, we start with one 

execution and modify the real-time occurrence of the events 

by slowing down or speeding up the clocks of the nodes and 

obtain another equivalent and admissable execution. The 

processors cannot tell any difference because events still 

happen at the same hardware clock times. Fig. 1. shows 

shifting of the processor p earlier and later. The shifting 

process is formalized with the following lemma. 

Lemma 1. Shifting [3]. Let  be an execution with 

hardware clock 
H  and let x  be a real number. Then 

),( xshift   is an execution with hardware clock H , 

where  

(a) xtHtH  )()(   for all t 

(b) if the delay of a message in   from p to q is d, then the 

delay of this message in   is d- x .  

 
Fig. 1. Shifting of processor p earlier and later. 

A.  The Lower Bound 

We will now prove the lower bound on the clock 

synchronization error between two clocks. For our analysis, 

we assume that the nodes p and q have perfect clocks (do not 

drift). We also assume that every message exchanged between 

p and q has a delay within the interval [d-u,d].  

Let   be a distributed clock synchronization algorithm 

that achieves  -synchronized clocks between the nodes p and 

q and terminated at time t. Consider the two executions 

shown in Fig. 2. In the first execution ( ), every message 

from p to q has delay d-u and from q to p has delay d. We 

shift the processor p u real-time earlier in the second 

execution (  ) where every message from p to q has delay d 

and from q to p has delay d-u. Since all the events occurring 

at both processors has the same hardware clock readings, 

these two executions are equivalent and indistinguishable 

from the point of view of the nodes p and q.  

 
Fig. 2. Two executions with two processors p and q 

 

Since the algorithm achieves  -synchronized clocks, at 

time t in the first execution we have that: 

  )()( tLtL pq
                                                        (4) 

After shifting, the algorithm must achieve the same 

accuracy for the synchronized clocks. Since 

utLtL pp  )()(   and )()( tLtL qq

  , we again have: 

  utLtLtLtL pqpq )()()()(                         (5) 

If we combine inequalities (4) and (5), we get 

that 2/u . This result states that there is not any 

distributed clock synchronization algorithm that will achieve 

a worst-case synchronization error lower than u/2 in a 

network with two nodes where the hardware clocks of the 

nodes do not drift. 

IV.  CONCLUSION 

In this paper, we presented the lower bound techniques 

used for proving the worst-case achievable synchronization in 

a network with two processors. Lundelius and Lynch [4] 

improved this lower bound for a fully connected network with 

n nodes. They showed that it impossible to synchronize the 

clocks of n processes any more closely than u(1-1/n). Later, 

Biaz and Welch [5] proved that for any communication 

network G, the best achievable synchronization error is half 

of the diameter of the communication network.  
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