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Abstract—Synchronization to an external time source such as Coordinated Universal Time (UTC), i.e. external synchronization, while
preserving tight synchronization among neighboring sensor nodes may be crucial for applications such as determining the speed of
a moving object in wireless sensor networks. However, existing time synchronization protocols in the literature which can be used for
external synchronization poorly synchronize neighboring nodes. On the other hand, the only protocol which aims at optimizing the
synchronization error between neighboring nodes is lack of a mechanism which synchronizes sensor nodes to a reference node and
hence it cannot provide external synchronization. Therefore, there is a lack in the literature of a time synchronization protocol which
can be used by applications demanding both external synchronization and tight synchronization among neighboring nodes.
In this paper, we answer the question of whether it is possible for sensor nodes to synchronize to a reference node while they optimize
the clock skew between their neighboring nodes at the same time. Within this context, we present a novel time synchronization protocol,
namely External Gradient Time Synchronization Protocol (EGSync). In EGSync, each sensor node synchronizes to a reference node
by using time information flooded by this node as well as synchronizes to its neighboring nodes by employing the agreement algorithm.
We implemented EGSync on the MICAz platform using TinyOS and evaluated it on a testbed setup including 20 sensor nodes. We
present the experimental results on our testbed and the simulation results for networks with larger diameters and densities.

Index Terms—Distributed Algorithms, External Time Synchronization, Gradient Time Synchronization.
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1 INTRODUCTION

COMMON notion of time is vital for the correct
and efficient operation of sensor nodes forming

wireless sensor networks (WSNs). This notion cannot
be achieved by using built-in hardware clocks alone
since they frequently drift apart. Hence, each sensor
node is required to participate in time synchronization
and calculate a software clock which represents the
common time inside the network. The objective of time
synchronization is to minimize the differences between
the software clocks of the nodes, i.e. clock skew, at any
time instant [1], [2], [3].

A majority of the time synchronization protocols for
WSNs in the literature [1], [4], [5], [6], [7], [8], [9], [10]
aim at optimizing the clock skew between arbitrary
sensor nodes, i.e. global skew, regardless of the distance1

between them. However, sensor nodes may be poorly
synchronized to their neighboring nodes with these
protocols since they do not take into account the time
information of all of their neighbors. Optimizing the
synchronization error between neighboring nodes, i.e.
local skew, may be crucial for applications such as target
tracking in WSNs [11].

Consider a tracking application which requires sensor
nodes to report a target object’s velocity in units
meters/second to a base station. In order to achieve this
goal, each sensor node is required to record the time
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at which it detected the target object and exchange this
information with its neighboring nodes. The estimated
velocity of the target object can be calculated by dividing
the difference of the detection times 4 by the distance
between the sensor nodes. In order to calculate 4 in
terms of real-time passed in units of second, sensor
nodes are required to be synchronized with respect to
an external time sources such as Coordinated Universal
Time (UTC) [12], [13]. As can be observed, the smaller
the synchronization error is observed between the
neighboring nodes, the more accurate 4 and hence the
velocity is estimated.

Gradient Time Synchronization Protocol (GTSP) [14] is
the first and only protocol which aims at optimizing local
skew in WSNs. GTSP is a completely decentralized protocol
since each sensor node synchronizes to its neighboring
nodes and there is not any special node which acts
as a time reference. Unfortunately, this property leads
to inability for GTSP to provide synchronization to an
external time source, i.e. external synchronization [9]. In
WSNs, a reference node which is synchronized to an
external time source is required in order to achieve
external synchronization. By internally synchronizing
the remaining sensor nodes to this reference node,
network-wide external synchronization is established.
Therefore, there is a lack in the literature of a
time synchronization protocol which can be used by
applications demanding both external synchronization
and local skew optimization, such as the tracking
application we mentioned.

The main contribution of this paper is to answer the
question of whether it is possible for sensor nodes to
synchronize to a reference node while they optimize
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the clock skew between their neighboring nodes at
the same time. Within this context, we present a
novel time synchronization protocol, namely External
Gradient Time Synchronization Protocol (EGSync). In
EGSync, each sensor node synchronizes to a reference
node by using time information flooded by this node
as well as synchronizes to its neighboring nodes by
employing an agreement algorithm. Hence, EGSync is
able to achieve external synchronization by optimizing
the synchronization error among the neighboring nodes.

The remainder of this paper is organized as
follows. Section 2 describes the related work on time
synchronization in WSNs. In Section 3, we describe
our system model. We present and describe EGSync in
detail in Section 4. Section 5 presents our implementation
of EGSync which has been done in TinyOS2 and its
evaluation on a testbed setup including 20 MICAz sensor
nodes. We also present simulation results in this section.
Finally, we present our conclusions in Section 6.

2 RELATED WORK

The fundamental problem of time synchronization has
been extensively studied for traditional distributed
systems. There are several theoretical studies in the
literature that focus on bounding the skew between
arbitrary nodes, i.e. global skew, in any network [15],
[16], [17], [18], [19]. There are also considerable amount
of protocol based studies in the literature that focus on
optimizing global skew in WSNs [1], [4], [5], [6], [7], [20],
[21], [8], [9], [10]. The fundamental shortcoming of these
practical studies is that their executions may introduce
large synchronization errors between neighboring nodes.
As an example, Flooding Time-Synchronization Protocol
(FTSP) [7], the de facto time synchronization protocol
in WSNs, is designed to optimize global skew. FTSP
synchronizes the whole network by electing a reference
node based on the smallest node identifier which serves
as a time source. The reference node periodically floods
its clock through the network. With flooding, an ad-hoc
tree is constructed on the fly. However, neighboring
nodes which are on different paths of the tree may not
be synchronized well because errors propagate down
differently on these paths.

Fan and Lynch [11] introduced gradient clock
synchronization where the clock skew between nodes
is a function of their distance and they emphasized
the skew between neighboring nodes, i.e. local skew.
There are considerable amount of studies that focus on
the development and analysis of theoretical algorithms
achieving optimal local skew [22], [23], [24], [25], [26],
[27], [28], [29]. However, less attention has been paid
to the development of practical protocols which aim
at optimizing the local skew. Up to our knowledge
Gradient Time Synchronization Protocol (GTSP) [14] is
the only practical study in WSNs with this aim. In GTSP,

2. http://www.tinyos.net

synchronization messages received from neighboring
nodes are used to adjust clocks. Using a simple
algorithm based on averaging the time information
received from neighbors (which has previously been
introduced in [30], [31]), the sensor nodes agree on a
common clock speed and clock value. Although GTSP
achieves a better local skew than FTSP, it leaves the
question open whether it is possible for sensor nodes
to synchronize to a reference time source while they
optimize the clock skew between their neighbors at the
same time.

3 SYSTEM MODEL

In this section, we introduce our system model which
we use in the rest of the paper. A WSN can be modeled
as a graph G = (V,E) which consists of a set of n
sensor nodes represented by vertex set V = {1, ..., n}
and bidirectional communication links between these
nodes represented by E ⊆ V ×V , respectively. Any node
u ∈ V can only communicate with its neighboring nodes,
which are defined as the nodes to which it is directly
connected. Nu = {v ∈ V | {u, v} ∈ E} and |Nu| represent
the set of neighbors and the number of neighbors of node
u, respectively.

The distance between any nodes u, v ∈ V is defined as
the number of edges on the shortest path between those
two nodes in the graph G. The diameter of the graph G
is the maximum distance between any two nodes. The
adjacency matrix A and the laplacian matrix L of the graph
G are defined as follows:

A(i, j) =

{
1, {i, j} ∈ E
0, otherwise

, (1)

L = D −A, (2)

such that D = diag(d1, d2, ..., dn) is the degree matrix of
G, i.e. di = |Ni|. The eigenvalues of L are represented
by λ1(L) ≤ λ2(L) ≤ ... ≤ λn(L).

Each node u is assumed to be equipped with an
unmodifiable hardware clock, which is denoted by Hu().
We define the reading of the hardware clock of the node
u at real time t as

Hu(t) =

t∫
0

hu(τ)dτ (3)

where hu(τ) represents the rate (speed) of the hardware
clock at time τ . Clock drift occurs where the hardware
clock does not progress at the exact speed of real-time.
The frequencies of crystal oscillators in WSNs exhibit a
drift between 30 and 100 ppm.3 Therefore, we assume
that hardware clocks have bounded drifts such that for all
times t it holds that

3. ppm=parts per million, i.e. 10−6.
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1− ε ≤ hu(t) ≤ 1 + ε (4)

where 0 < ε� 1.
Since the hardware clocks of the nodes drift apart

and the nodes cannot modify their hardware clocks,
alternatively each node u maintains a logical clock, which
is denoted by Lu(), in order to acquire synchronized
notion of time. The value of the logical clock at time
t is calculated as follows:

Lu(t) =

t∫
0

hu(τ)lu(τ)dτ + θu(t) (5)

where lu(t) is called the rate multiplier and θu(t) is called
the offset of the logical clock.

The objective of time synchronization is to minimize
the differences of the logical clock values in the system,
i.e. clock skew. The global skew at any time t is defined as
the largest clock skew between any two arbitrary nodes,
i.e. max

u,v∈V
{|Lu(t)−Lv(t)|}. Similarly, the local skew at any

time t is defined as the largest clock skew between any
two neighboring nodes, i.e. max

u∈V,v∈Nu

{|Lu(t)− Lv(t)|}.

4 EXTERNAL GRADIENT TIME
SYNCHRONIZATION PROTOCOL (EGSYNC)
In this section, we present External Gradient Time
Synchronization Protocol (EGSync) which synchronizes
sensor nodes to the clock of a reference node while
optimizing synchronization error between neighboring
nodes at the same time. In order to achieve this goal,
EGSync executes an agreement protocol among the
neighboring sensor nodes and forces them to agree on
a common clock value and clock speed. Additionally
a reference node floods its time information into the
network. By using the flooded information together with
the common clock value and clock speed, the other
nodes agree on the clock speed and value of the reference
node. Figure 1 presents the general strategy of EGSync
on a sample network.

The pseudo-code of the EGSync protocol is presented
in Algorithm 1. Sensor nodes executing this algorithm
agree on the hardware clock speed and hardware
clock value of a predefined reference node ref , whose
node identifier equals to ROOT . Each sensor node
v ∈ V maintains a neighbor repository in order to
keep track of time information of its neighbors. By
using this repository, node v can estimate at any time
the relative hardware clock rate (with respect to its
hardware clock) and the logical clock value of each of
its neighboring nodes. Due to the memory constraints
of the sensor nodes, the amount of memory dedicated
to this repository must be specified in advance. Hence,
the maximum number of neighbors which a sensor node
keeps track of is limited. In order to keep track of the

Figure 1: The general strategy of EGSync: Nodes agree on a common
clock value and speed by executing an agreement protocol with their
neighbors. Additionally, a reference node floods its rate multiplier and
time offset in order for the other nodes to agree on its clock speed and
value.

Algorithm 1 EGSync pseudo-code for node v with a
fixed reference node whose node identifier is ROOT.

1: Initialization
2: ∀u ∈ Nv set huv ← 1, luv ← 1, Luv ← 0
3: lv ← 1, θv ← 0
4: lrefv ← 1, ∆ref

v ← 0, seqv ← 0
5: set periodic timer with period B
6:
7: � Upon receiving < Hu, Lu, lu, l

ref
u ,∆ref

u , sequ >
8: store (Hv, Hu) pair and estimate huv
9: luv ← lu

10: Luv ← Lu
11: update lv and θv
12: if seqv < sequ
13: lrefv ← lrefu
14: ∆ref

v ← ∆ref
u

15: seqv ← sequ
16: endif
17
18: � Upon timer timeout
19: if (node identifier = ROOT )
20: lrefv ← lv
21: ∆ref

v ← Hv − Lv
22: seqv ← seqv + 1
23: endif
24: broadcast < Hv, Lv, lv, l

ref
v ,∆ref

v , seqv >

latest time information received from the reference node
ref , node v maintains three extra variables: lrefv holds
the latest rate multiplier, ∆ref

v holds the latest difference
between the hardware clock and the logical clock, i.e.
time offset and seqv holds the largest sequence number
received from the reference node, respectively.

When node v is powered on, the time information
kept for each neighboring node u ∈ Nv are initialized:
the relative hardware clock rate huv is initialized to
1, the rate multiplier luv is initialized to 1 and the
estimated logical clock value Luv is initialized to 0 (Line
2). Additionally, node v initializes its rate multiplier lv
to 1 and its logical clock offset θv to zero (Line 3).
Hence, the value of the logical clock of node v at any
time is equal to its hardware clock reading until the
values of the parameters lv and θv are changed upon
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receiving synchronization messages from neighboring
nodes. Moreover, lrefv is initialized to 1 and ∆ref

v and
seqv are initialized to zero (Line 4). Last, node v starts
a periodic timer which will fire each time its hardware
clock progresses B units (Line 5).

Each time a synchronization message of the form
< Hu, Lu, lu, l

ref
u ,∆ref

u , sequ > is received from any
neighboring node u ∈ Nv (Line 7), node v stores the
received hardware clock reading Hu and its hardware
clock reading Hv at the receipt time of this message as
a pair (Hv, Hu) in the regression table assigned for that
neighbor. This table has a limited capacity to hold the
most recent N pairs. Node v assumes a linear relationship
between its hardware clock and the hardware clock of
node u and performs least-squares regression on the
received pairs in order to calculate the estimated regression
line (Line 8). It should be noted that the slope of this line
is an estimate for the relative hardware clock rate hu/hv ,
which we denote by huv . The received rate multiplier
and logical clock value are also stored for that neighbor
(Lines 9-10). Using these information, node v is able to
calculate the estimated logical clock value of node u at
any time t, i.e. Luv (t), by progressing the received logical
clock value Lu at the speed huv .l

u
v with respect to its

hardware clock.
Using the values of huv and luv stored for each neighbor

u ∈ Nv , node v updates its rate multiplier and logical
clock offset in equality 5 as follows (Line 11):

lv(t
+) =

lv(t) +
∑
u∈Nv

huv (t).luv (t)

|Nv|+ 1
, (6)

θv(t
+) = θv(t) +

∑
u∈Nv

(Luv (t)− Lv(t))
|Nv|+ 1

(7)

such that t+ denotes the time just after the update
operation. It can be proven that sensor nodes agree on a
common logical clock speed and clock value by applying
these equations.4

If the received synchronization message carries a
higher sequence number (Line 12), this situation
indicates that the reference node has recently flooded
its current rate multiplier and time offset into the
network. Hence, v updates lrefv , ∆ref

v and seqv to the
corresponding received values (Lines 13-16).

For all times t after the clock speed and clock
value agreement is achieved, it theoretically holds
for the reference node ref and for the node v that
href (t).lref (t) = hv(t).lv(t). Thus, it follows that

href (t) = hv(t).
lv(t)

lref (t)
. (8)

Hence, in order to progress its logical clock at the
hardware clock rate of the reference node, node v
calculates its logical clock using the following equation
instead of equation 5:

4. Please see Section B of the Appendix.

Algorithm 2 getReferenceClock interface for node v in
EGSync, which returns the estimated clock value of the
reference node.

1: getReferenceClock()
2: return Lv + ∆ref

v

Lv(t) =

t∫
0

hv(τ)
lv(τ)

lrefv (τ)
dτ + θv(t). (9)

When a timeout event is generated by the system
(Line 18), lrefv is set to the rate multiplier, ∆ref

v is
recalculated by subtracting the value of the logical clock
from the value of the hardware clock and the sequence
number is incremented if that node is the reference
node (Lines 19-23). Otherwise, these parameters remain
unchanged. It should be noted that with the increment of
the sequence number, a new flooding round is initiated
by the reference node. Each node broadcasts a message
which carries the value of its hardware clock, logical
clock, rate multiplier, rate multiplier and time offset of
the reference node and the sequence number (Line 24).

By using the synchronized logical clock values, node
v is also able to output the hardware clock value of the
reference node, which we denote by Href

v , as follows:

Href
v (t) = Lv(t) + ∆ref

v (t). (10)

Hence, the time offset received from the reference node
is added to the logical clock value in order to calculate
this value, as presented by getReferenceTime() interface of
Algorithm 2 which returns Href

v .5

Due to the non-deterministic delays occurred during
the exchange of time information [7], [1], [5], [14],
[32], the agreement mechanism employed by EGSync is
unable to provide perfect agreement. It can be shown
that the error of the agreement is bounded and it
essentially depends on several values related to network
parameters. Consequently, Lref (t)−Lv(t) is bounded for
all time instants t after the agreement is established.

Theorem 4.1: If the graph G representing the
communication network remains strongly connected,
then ∀v ∈ V : lim

t→∞
(Lref (t)− Lv(t)) ≤ γ holds such that

γ depends on the total degree of G and the eigenvalues
of L and A2.

Proof: Please see section B of the Appendix for the
details.

5 TESTBED EXPERIMENTS AND SIMULATIONS

In this section, we evaluate the performance of
EGSync through the experiments performed on a real
hardware platform and the simulations performed in

5. EGSync is able to synchronize sensor nodes in the network to
an external time source. Please see Section C of the Appendix for the
details.
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Figure 2: The placement of sensor nodes in order to construct the line
and ring topologies for the experiments.

our WSN simulator. For performance comparison, we
considered GTSP since its objective is to provide tight
synchronization among the neighboring nodes, as in
EGSync. We also considered FTSP since it requires a
reference node which acts as a time source for the
other nodes in the network, it has a publicly available
implementation in TinyOS and it is used as a benchmark
by most of the studies in the literature [14], [8], [9], [10].

For the evaluation of these protocols, we focused on
the instantaneous global skew and local skew between
sensor nodes. We also considered average global skew
which is defined as the instantaneous average of the
global skew and average local skew which is defined as the
instantaneous average of the local skew by considering
all nodes. Moreover, we made a comparison of these
protocols in terms of their computation and memory
requirements and message complexities.

Table 1: Summary of the measured skew values observed with FTSP,
GTSP and EGSync during the experiments.

Line Topology Ring Topology

FTSP GTSP EGSync FTSP GTSP EGSync

Max. Global 518 µs 34 µs 35 µs 38 µs 20 µs 19 µs

Avg. Global 422 µs 26 µs 29 µs 30 µs 15 µs 14 µs

Max. Local 437 µs 10 µs 14 µs 26 µs 10 µs 10 µs

Avg. Local 55 µs 4 µs 5 µs 6 µs 3 µs 4 µs

5.1 Experimental Results

We used a testbed of 20 MICAz sensor nodes in our
experiments.6 We compiled the same application code
with FTSP, GTSP and EGSync protocols, and executed
these applications on the identical testbed. The beacon
period of these protocols was 30 seconds and the
number of entries in each regression table was 8. The
duration of the experiments was approximately 20000
seconds and we powered on sensor nodes randomly
in the first 3 minutes. The placement of sensor nodes
during the experiments is shown in Figure 2. The
experiments on the ring topology allowed us to observe
the synchronization error between neighboring nodes on
the different paths of the ad-hoc tree constructed by

6. Please see Section A of the Appendix for details on MICAz
hardware platform, implementation of the protocols and testbed setup.

flooding. The experiments on the line topology, with
which a larger diameter is obtained when compared
to the ring topology, allowed us to observe the
synchronization error between neighboring nodes as the
diameter of the network increases.

5.1.1 Synchronization Performance
We did not take into account the skew values during
approximately the first 2500 seconds of the experiments
until the initial synchronization process completes. Table
1 summarizes the maximum skew values observed
during our experiments.

Figures 3, 4, 5 and 6 show global, average global,
local and average local skews measured for FTSP, GTSP
and EGSync on the line and on the ring topologies,
respectively. On the line topology, EGSync outperformed
FTSP dramatically in terms of local and global skew.
Moreover, the performances of EGSync and GTSP were
quite similar. The same situation can also be observed on
the ring topology. When compared to FTSP and GTSP, it
can be concluded that EGSync eliminated the deficiency
of inability to provide synchronization to a reference
node with tight local skew as well as tight global skew.

Figures 7 and 8 present the maximum synchronization
error between the reference node and the other nodes
on the line and ring topologies for FTSP and EGSync.
As can be observed, there is an exponential growth of
the synchronization error between the reference node
and other nodes as the distance to the reference node
gets larger on the line topology. This fact has been
previously introduced in [8], which is consistent with our
experimental results with FTSP. However, with EGSync,
since all nodes agree on the clock value and the clock
speed of the reference node, the synchronization errors
of far-away and nearby nodes to the reference are quite
similar. Hence, we conclude that the serious scalability
problem for FTSP does not hold for EGSync. As shown
in Figure 2, two subtrees rooted at node 1 is formed
due to flooding and hence nodes 8 to 12 have maximum
distance to the reference node when compared to the
other nodes on the ring topology. In FTSP, these nodes
exhibit the largest synchronization error to the reference
node. However, in EGSync, the synchronization error
between the reference node and the other nodes are quite
stable, as those on the line topology.

The main objective of EGSync is to provide tight
synchronization between neighboring nodes while
synchronizing them to the clock of the reference node.
Figures 9 and 10 present the synchronization error
between the nodes 19 and 20 which are at the end
of the line topology and the maximum local skew per
node, respectively. With FTSP, as the distance from the
reference node increases, the skew between neighboring
nodes also grows. We observed a maximum local skew
more than 400 µsec for node with identifier 20 during
the experiments. However, the maximum local skews of
sensor nodes observed with GTSP and EGSync are quite
close to each other and they do not increase drastically
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Figure 3: Global and average global skews measured for FTSP (left), GTSP (middle) and EGSync (right) on the line topology, respectively.

Figure 4: Local and average local skews measured for FTSP (left), GTSP (middle) and EGSync (right) on the line topology, respectively.

Figure 5: Global and average global skews measured for FTSP (left), GTSP (middle) and EGSync (right) on the ring topology, respectively.

Figure 6: Local and average local skews measured for FTSP (left), GTSP (middle) and EGSync (right) on the ring topology, respectively.

Figure 7: Maximum skew to the reference node (node with identifier 1) per node measured for FTSP (left column) and EGSync (right column)
on the line topology.
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Figure 8: Maximum skew to the reference node (node with identifier 1) per node measured for FTSP (left column) and EGSync (right column)
on the ring topology.

Figure 9: The synchronization error between nodes 19 and 20 for FTSP (left), GTSP (middle) and EGSync (right) on the line topology, respectively.

Figure 10: The maximum local skew per node for FTSP (left), GTSP (middle) and EGSync (right) on the line topology, respectively.

as the distance to the reference node increases. This
situation can also be observed from the synchronization
error between the nodes 19 and 20, which are at the
end of the line topology. In FTSP, since nodes consider
only the clock values flooded by the reference node
and they do not consider the clock of their neighbors,
the synchronization error between the nodes 19 and 20
can be quite large during the execution. However, the
maximum synchronization error between nodes 19 and
20 is quite small in GTSP and EGSync when compared to
FTSP. This is due to the fact that sensor nodes executing
GTSP and EGSync synchronize to their neighbors.
Although EGSync additionally synchronizes sensor
nodes to a reference time source in contrary to GTSP, the
synchronization error between the neighboring nodes is
quite comparable to that in GTSP.

Figures 11 and 12 present the synchronization error
between nodes 9 and 10 on the ring topology and the
maximum local skew per node, respectively. It can be
observed from this figure that the maximum local skew
increases in FTSP as the distance from the reference node
increases. However, this case does not hold for GTSP
and EGSync. If we consider nodes 9 and 10, although
they are neighbors, a local skew of 25 µsec is observed
between them in FTSP. However, a skew of 5 µsec
and 8 µsec are observed between them in GTSP and

EGSync, respectively. The large skew in FTSP is due
to the fact that nodes 9 and 10 are on different paths
of the tree formed by flooding and the synchronization
errors propagate differently on these paths. We conclude
that neighboring nodes are more tightly synchronized in
EGSync when compared to FTSP and the maximum local
skews of the nodes are quite close to each other.

Our experiments showed that EGSync synchronizes
sensor nodes to a reference node quite tightly by also
preserving tight synchronization among the neighboring
nodes.

5.1.2 Evaluation of the Flooding Mechanism

As can be observed from the experiments, the local
and global skew values of EGSync are very slightly
worse than those of GTSP. The reason behind this
observation can be explained by examining the periodic
time offset flooding mechanism initiated by the reference
node. Upon receiving the flooded time offset, nodes
update their time information about the reference node.
However, nodes propagate the received time offset after
waiting for a given period of time. This slow-flooding
strategy introduces larger instantaneous local and global
skews between the nodes which collected the recent time
information of the reference node and the nodes which
have not collected this time information yet.
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Figure 11: The synchronization error between nodes 9 and 10 for FTSP (left), GTSP (middle) and EGSync on the ring topology, (right) respectively.

Figure 12: The maximum local skew per node for FTSP (left), GTSP (middle) and EGSync (right) on the ring topology, respectively.

The negative effect of the slow propagation of the
reference time information can be reduced by increasing
the speed of the flood, i.e. with rapid-flooding. However,
rapid-flooding can also be slow due to neighborhood
contention since the nodes cannot propagate the flood
until their neighbors have finished their transmissions
and it is difficult in WSNs [33], [10].

5.1.3 Energy Consumption and Memory Requirements
Apart from the synchronization quality, we also
compared the performances of EGSync, GTSP and FTSP
in terms of memory allocation and communication and
CPU overhead. Table 2 summarizes our measurements.
The amount of memory which is allocated to store
collected time information determines the major memory
requirements of the protocols. In publicly available
implementation of FTSP, 40 bytes of memory is allocated
for the least-squares table which is used to store the time
information of the reference node. In our implementation
of GTSP, a least-squares table is allocated for each
neighbor and hence together with the additional stored
information, a total of 64 bytes of memory is allocated
to keep track of a neighboring node. EGSync requires
an additional 8 bytes for each neighbor (to store
information of a neighboring node about the reference
node) and hence allocates 72 bytes per neighbor. It can be
concluded that GTSP and EGSync increases the memory
requirements of time synchronization.

Normally, the longer the synchronization messages,
the more the time is required to transmit and receive
these messages which increases the energy consumption.
The length of the synchronization messages is 13
bytes and 14 bytes in GTSP and FTSP, respectively.
Since the time information of the reference node
is also propagated in EGSync, this increased the
length of the synchronization messages to 23 bytes.
However, the payload of the messages is fixed in

most platforms, e.g. it is 28 bytes in TinyOS. Hence,
synchronization messages of EGSync do not exceed the
fixed message length in TinyOS and do not increase
the duration of the communication. Moreover, the
communication frequency in all of these three protocols
is fixed (the beacon period was 30 seconds in our
experiments), i.e. their communication complexities are
equal. Consequently, it can be concluded that their
overhead in terms of communication are equal.

From the point of time where a synchronization
message is received to the time it is processed
and time information is updated determines the
major computation requirements of the protocol and
it is another important factor in terms of energy
consumption. Upon receiving a synchronization
message, FTSP, GTSP and EGSync consumed at most
5500, 6800 and 6950 microseconds of CPU time,
respectively, for processing the corresponding message.
Hence, EGSync has approximately 23% and 2% more
CPU overhead when compared to FTSP and GTSP,
respectively.

By considering the overall results, it can be concluded
that EGSync slightly increases the energy consumption
and memory allocation of GTSP.

Table 2: Memory requirements, CPU overhead and synchronization
message length of FTSP, GTSP and EGSync during the experiments.
|N | is used to denote maximum neighborhood cardinality.

FTSP GTSP EGSync

Memory Requirements 40 bytes 64*|N | bytes 72*|N | bytes

CPU overhead 5500 µs 6800 µs 6950 µs

Message Length 13 bytes 14 bytes 23 bytes
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Figure 13: EGSync simulation results for different size of networks with line (left) and ring (middle) topologies. On the right, simulation results
of networks consisting 100 nodes which have different neighbor densities are presented.

5.2 Simulation Results for Longer and Denser
Networks
In addition to the real-world experiments, we
implemented EGSync in our WSN simulator using
Java language in order to observe how synchronization
errors between arbitrary nodes and between neighboring
nodes change as the diameter of the network increases.
During our simulations, we modeled the hardware
clocks of nodes in software with a random drift
of 50 ppm. We applied our evaluation metrics for
the networks which is constructed as line and ring
topologies which have different number of sensors (and
hence diameters). For each network, we performed 10
simulation runs and averaged the calculated average
global and average local skews for these runs. Figure 13
shows the simulation results from which we conclude
that the local skew and global skew of EGSync grows
substantially slowly as the diameter of the network
increases. EGSync exhibits quite tight synchronization
on longer and larger networks as well.

In order to observe the synchronization accuracy
of EGSync on denser networks, we constructed five
different networks consisting of 100 sensor nodes and
having an average neighborhood cardinality of 10, 20, 30,
40 and 50, respectively. These networks may introduce
more packet collisions due to their high density when
compared to the line and ring topologies. On the other
hand, sensor nodes interact with more neighbors and we
observed that this situation improves the performance
of the agreement protocol. Moreover, since there are
much more alternative paths and the synchronization
messages from the reference node may follow shorter
paths to reach far-away nodes, these nodes may collect
time information more quickly. As can be observed from
Figure 13, the synchronization performance of EGSync
is affected positively from the increase of the network
density.

6 CONCLUSION

Most of the time synchronization protocols in WSNs
suffer from exhibiting large synchronization errors
between neighboring nodes although they provide
tight synchronization between arbitrary nodes. For
instance in Flooding Time-Synchronization Protocol
(FTSP), neighboring nodes are poorly synchronized since
each sensor node neglects the time information of its

neighboring nodes while synchronizing to a reference
node. Gradient Time Synchronization Protocol (GTSP)
prevents this shortcoming by synchronizing each sensor
node to its neighboring nodes. However, it is quite
open how to anchor the sensor network to an external
time source since there is not any reference node in
GTSP. External synchronization is crucial for the correct
operation of the applications such as target tracking
which also require tightly synchronized neighboring
nodes.

In this study, we addressed this problem and designed
a time synchronization protocol, namely External
Gradient Time Synchronization Protocol (EGSync),
which aims at providing tight synchronization between
neighboring nodes while synchronizing them to the
clock of a reference node at the same time. In EGSync,
all of the sensor nodes agree on the clock speed and
the clock value of the reference node by using the
time information flooded by this node and by applying
an agreement algorithm which is based on averaging
the time information received from neighboring nodes.
Our experiments and simulations showed that the
synchronization accuracy of EGSync is quite tight
in terms of local and global skew. Moreover, we
observed that EGSync has similar overhead in terms of
computation, communication and memory requirements
when compared to GTSP.

A major disadvantage of EGSync is that, our current
implementation requires a fixed reference node and it
is predefined before deployment of the sensor network.
Hence, EGSync fails to maintain synchronization to
the reference node when this node crashes. However,
EGSync still continues to synchronize the logical clocks
of the sensor nodes by executing the agreement
algorithm and by using the time information flooded by
the reference node just before the time it has crashed.
When using EGSync in order to synchronize the network
to UTC time, more than one reference nodes which
have access to UTC time can be used to improve the
robustness of EGSync in case of reference node failures.
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APPENDIX A
DETAILS ON THE EXPERIMENTS
A.1 Hardware Platform
The hardware platform used for the implementation
and experiments is MICAz from Memsic7. MICAz
platform includes low-power 8-bit Atmel Atmega128L
micro-controller which has 4 kB RAM and 128 kB
program flash memory. The Chipcon CC2420 radio chip
provides a 250 kbps data rate at 2.4 GHz frequency. We
used 7.37 MHz quartz oscillator on the MICAz board as
the clock source for the timer used for getting the local
time. The timer operates at 1/8 of that frequency and
thus each timer tick occurs at approximately 921 kHz
(approximately 1 microsecond).

A.2 Implementation of the Protocols
We implemented EGSync and GTSP8 in TinyOS 2.1.1
for our experiments. It is well-known that MAC layer
timestamping reduces the effect of the non-deterministic
delays on the message path and increases the quality
of time synchronization [7], [1], [5], [14], [32]. Hence,
in our implementations, we used CC2420 radio chip
implementation of packet level time synchronization
interfaces [34] provided by TinyOS for MAC layer
timestamping. We used the latest implementation of
FTSP coming with TinyOS 2.1.1 and modified it to
work with a fixed reference node by disabling dynamic
reference node election mechanism.

A.3 Testbed Setup
We used a testbed of 20 sensor nodes which are placed
in the communication range of a reference broadcaster
sensor node, as shown in Figure 14. We constructed line
and ring topologies by configuring each node such that
it will accept incoming messages from the nodes with
identifier one more or one less than the identifier of
the current node. In order to collect the logical clock
values, the reference broadcaster transmits query packets
periodically. The interval between these query packets
is uniformly distributed between 20 and 23 seconds.
Each query message is received approximately at the
same time by all nodes. Then, the nodes broadcast the
value of their logical clocks at the receipt time of the
corresponding query packet. The base station attached
to a PC transfers these messages to the serial port. An
application listening the serial port logs these messages.
At the end of the experiments, the evaluation metrics are
applied to the collected data and the results are analyzed.

APPENDIX B
ANALYSIS OF EGSYNC PROTOCOL
In this section, we prove that the synchronization error
of nodes executing EGSync is bounded. Through the

7. http://www.memsic.com
8. Since GTSP does not have any publicly available implementation,

we also implemented GTSP it in TinyOS ourselves.

Figure 14: The testbed of 20 MICAz sensor nodes.

execution of EGSync, the reference node floods its rate
multiplier and time offset into the network while all of
the other nodes including the reference node participate
in the agreement algorithm. The following theorem
states that if uncertainties through the message path are
neglected, sensor nodes agree on a common logical clock
speed by employing the clock speed update equation 6.

Lemma B.1: If the graph G representing the
communication network remains strongly connected,
then ∀v ∈ V : lim

t→∞
(hv(t).lv(t)) = speed.

Proof: The equation 6 can be rewritten as x(t+) =
M.x(t) such that x(t) is an nx1 matrix whose ith entry
contains the logical clock speed hi(t).li(t) of the node
i ∈ V at time t and M is a nxn row-stochastic matrix
corresponding to the graph G whose aij entry is defined
as

aij =

{
1/|Ni|+ 1 {i, j} ∈ E
0 otherwise

.

The proof is based on the fact that the products
of row-stochastic matrices converges if G is strongly
connected. The detailed proof can be found in [31],
[14]. This result also implies that limiting the number of
neighbors of a sensor node does not prevent agreement
as long as the communication graph remains strongly
connected.
After the clock speed agreement is established, it can
be proven that sensor nodes agree on a common
logical clock value by employing the clock offset update
equation 7.

Lemma B.2: If the graph G representing the
communication network remains strongly connected,
then ∀v, u ∈ V : lim

t→∞
(Lv(t)− Lu(t)) = 0.

Proof: It is also proven in [31], [14] that by employing
the 7 equality at each synchronization message receipt,
the logical clocks of the sensor nodes will converge to
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a common value. The proof is based on establishing
consensus by using distributed averaging.
However, the uncertainties on the message path,
i.e. message delay, directly effects the error of the
synchronization in WSNs. Hence, message delay must
be taken into account in order to obtain a realistic
upper bound on the synchronization accuracy. In [35],
[36], [1], message delay is modeled as a Gaussian
random variable. By following these studies, we also
model message delay as a normally distributed random
variable with mean zero and variance σ2.

As we mentioned, the slope of the estimated
regression line is an estimate for the relative hardware
clock rate. Hence, the probability distribution of the
slope of the regression line huv in the equality 6 which
represents the speed of the hardware clock of node u
with respect to that of the hardware clock of node v can
be given as [37]:

huv ∼ N
(
hu
hv
, σ2/Sxx

)
. (11)

where Sxx =
∑

(xi−x)2 such that (xi, Yi) represents the
collected data points in the regression table.9 Assume
that 1

Sxx
≤ 1

S and lv ≤ ` hold for all times t and for all
nodes v ∈ V .10 Hence, huv can be rewritten as

huv =
hu
hv

+ duv (12)

such that duv ∼ N (0, σ
2

S ) represents the error of the
regression due to the non-deterministic delays occurred
during the communication between the nodes u and v.
Hence,

huv .l
u
v =

hu
hv
.luv + duv.l

u
v

=
hu
hv
.luv + νuv (13)

holds such that νuv ∼ (0, σ
2

S `
2). By using this equality,

the equality 6 can be rewritten as follows:

lv(t
+) =

lv(t) +
∑
u∈Nv

huv (t).luv (t)

|Nv|+ 1

= lv(t) +

∑
u∈Nv

(hu

hv
.luv (t)− lv(t))

|Nv|+ 1

+

∑
u∈Nv

νuv(t)

|Nv|+ 1

= lv(t) + c
∑
u∈Nv

(
hu
hv
.luv (t)− lv(t)) + nv(t)(14)

where c = 1/(|Nv|+ 1) and nv(t) = c
∑
u∈Nv

νuv(t).

9. Please see [38] for the details.
10. Since it can be assumed that number of successive message losses

in sensor networks can be upper bounded, 1/Sxx can also be upper
bounded due to periodic synchronization and message exchange.

It can be shown that the equality 14 is equivalent to
the equality 5 in [39].11 Hence, the following theorem
holds:

Theorem B.1: If the graph G remains strongly
connected, then the variance of lv for any v ∈ V
is upper bounded by

cσ
2

S `
2min{Dnmax {λi} , λmax(A2)

∑n
i=2 λi}, (15)

where Dn =
∑n
i=1 di is the total degree in the network

and λi = 1/(2λi(L)− cλ2i (L)).
Proof: Apply Theorem 2 in [39] with u= 0, ε = c and

σ2 = σ2

S `
2.

It can also be shown that the clock offset update
equation 7 is also equivalent to the equality 5 in [39].
Consequently, we conclude that the errors of the clock
speed and clock value agreement algorithms employed
by EGSync essentially depend on the total degree of the
network and the eigenvalues of L and A2. Therefore,
the difference of the logical clock values of the reference
node ref and node v, i.e. Lv − Lref , is bounded.

Now consider the offset propagation mechanism of
EGSync. After the clock value and speed agreement is
achieved, the reference node propagates ∆ref = Href −
Lref through the network periodically. When any node
v receives this difference, it can estimate the value of
the hardware clock of the reference node by adding the
received difference to Lv . The error of this estimation is
bounded for all times after the agreement is achieved
since the error of Lv − Lref is bounded.

APPENDIX C
SYNCHRONIZATION TO THE REAL-TIME

In general, external synchronization in WSNs can be
achieved by applying the following steps. First, a
reference node is synchronized to an external time
source, such as UTC time via a GPS receiver. Second,
the remaining sensor nodes are synchronized to the
reference node by employing internal synchronization. If
the reference node is equipped with a GPS receiver and
has access to the real-time, by taking two observations
of real-time t0 and t1 such that t0 < t1 after all of the
nodes agreed on a common clock speed, it can estimate
its hardware clock speed at time t such that t0 < t1 ≤ t
as

ĥref (t) =
Href (t1)−Href (t0)

t1 − t0
. (16)

Using this value, the reference node can also estimate
the common logical clock speed inside the network after
the clock speed agreement as follows

11. Consider equality 4 in [39]. Substitute ti(k) with hi
hi
.li(t) = li(t),

t̂j(k) with hji .lj(t) =
hj

hi
.lj(t) + νij and ε with 1/(|Nv | + 1). Hence,

we reach equality 5 in [39].
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ˆspeed = ĥref (t).lref (t) (17)

since it knows lref (t) and it can estimate href (t) by using
equality 16. The reference node is now required to flood
synchronization messages into the network which carry

ˆspeed instead of lref (t) and ∆ref (t) = t−Lref (t) instead
of ∆ref (t) = Href (t)− Lref (t).

As a final modification, each sensor node v is required
to calculate its logical clock using the following equation
instead of the equation 9:

Lv(t) =

t∫
0

hv(τ)
lv(τ)

ˆspeed
dτ + θv(t). (18)

Thus, node v progresses its logical clock at the speed of
the real-time, i.e. 1, and it is able to output the real-time
at any time by adding ∆ref

v to Lv .


