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Time Synchronization Based On Slow Flooding
in Wireless Sensor Networks
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Abstract—The accurate and efficient operation of many applications and protocols in wireless sensor networks require synchronized
notion of time. In order to achieve network-wide time synchronization, a common strategy is to flood current time information of a
reference node into the network, which is utilized by the de facto time synchronization protocol Flooding Time Synchronization Protocol
(FTSP). In FTSP, the propagation speed of the flood is slow since each node waits for a given period of time in order to propagate its
time information about the reference node. It has been shown that slow-flooding decreases the synchronization accuracy and scalability
of FTSP drastically. Alternatively, rapid-flooding approach is proposed in the literature, which allows nodes to propagate time information
as quickly as possible. However, rapid flooding is difficult and has several drawbacks in wireless sensor networks. In this paper, our aim
is to reduce the undesired effect of slow-flooding on the synchronization accuracy without changing the propagation speed of the flood.
Within this context, we realize that the smaller the difference between the speeds of the clocks, the smaller the undesired effect of
waiting times on the synchronization accuracy. In the light of this realization, our main contribution is to show that the synchronization
accuracy and scalability of slow-flooding can drastically be improved by employing a clock speed agreement algorithm among the
sensor nodes. We present an evaluation of this strategy on a testbed setup including 20 MICAz sensor nodes. Our theoretical findings
and experimental results show that employing a clock speed agreement algorithm among the sensor nodes drastically improves the
synchronization accuracy and scalability of slow-flooding.

Index Terms—Distributed Algorithms, Time Synchronization, Slow Flooding, Least-Squares, Clock Speed Agreemeent.
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1 INTRODUCTION

S ENSOR nodes in wireless sensor networks (WSNs)
are equipped with cheap hardware clocks which

frequently drift apart due to their low-end quartz
crystals. Since the drift can be different for each
sensor node, the hardware clocks of the nodes may
not remain always synchronized although they might
have been synchronized when they are started up.
Lack of synchronized time leads to inaccurate and
inefficient operation of many applications and protocols
in WSNs [1], [2]. Hence, a time synchronization protocol
is required so that all nodes exchange their time
information to synchronize their clocks for minimizing
their synchronization error, i.e. clock skew.

A common method in order to achieve network-wide
time synchronization in WSNs is to flood current time
information of a reference node into the network.
Flooding Time Synchronization Protocol (FTSP) [3], the
de facto time synchronization protocol in WSN world,
utilizes this method by allowing nodes to propagate
their time information about the reference node after
waiting for a given period of time. It has been shown that
slow-flooding decreases the synchronization accuracy and
scalability drastically due to the waiting times at each
node [4]. In order to prevent these side effects, PulseSync
[4] offers rapid-flooding by allowing nodes to propagate

• The authors are with the Department of Computer Engineering, Ege
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their time information quickly and reliably, and hence
increasing the propagation speed of the flood.

However, although rapid flooding strategy improves
the synchronization accuracy and scalability of flooding
based time synchronization dramatically, it has several
drawbacks. First, rapid-flooding in WSNs can also
be slow due to neighborhood contention since the
nodes cannot propagate the flood until their neighbors
have finished their transmissions [5], [6]. Secondly, the
transmissions of the sensor nodes need to be scheduled
to avoid neighbor contention [4], [5], [7]. While this
scheduling is straightforward for simple line topologies
as used in the experiments in [4], it can be quite
sophisticated in dense networks with other topologies.
Finally, reliable rapid flooding in sensor networks is
difficult due to packet losses. Retransmission, as a simple
solution to recover lost packets, may lead to broadcast
storm problem. More sophisticated solutions for loss
recovery may decrease the speed of the flood and
increase energy consumption of the nodes [8].

Consequently, the severe drawbacks of rapid flooding
mentioned above bring us to the following question:
Is it also possible to achieve scalable and tight
synchronization in WSNs with slow flooding? In
this paper, we answer this question positively by
showing that the undesired effect of slow-flooding
on the synchronization accuracy can be eliminated by
preserving the propagation speed of the flood. For this
purpose, we first consider FTSP and show that its
drift estimation mechanism which estimates the progress
speed of the reference node’s clock with respect to the
hardware clock speed of the other nodes exhibits an
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exponentially growing error with the network diameter.
The waiting times at each hop due to slow-flooding
amplify this error and degrades the accuracy of
synchronization, leading to a serious scalability problem.
Thus, we realize that the smaller the error of the
drift estimation and hence the difference between the
speeds of the clocks, the smaller the undesired effect
of waiting times on the synchronization accuracy. In
the light of this realization, our main contribution is to
show that the synchronization accuracy and scalability of
slow-flooding can drastically be improved by employing
a clock speed agreement algorithm among sensor nodes.
We introduce Flooding With Clock Speed Agreement
(FCSA) protocol which forces all nodes to run at the
same speed by employing an agreement algorithm and
synchronizes them to a reference node which floods
stable time for the whole network. We theoretically show
that the synchronization error of FCSA grows with the
square root of the network diameter, not exponentially
as in FTSP.

There are synchronization protocols in the literature
which also force all nodes to agree on a common
clock speed [9], [10]. However, FCSA is different
from these protocols in the following aspect. FCSA
utilizes flooding together with clock speed agreement
in order to optimize the synchronization error between
the reference node and the remaining nodes in the
network. This approach leads to a significant advantage:
FCSA can be used for synchronizing sensor network
to a stable time source such as such as Coordinated
Universal Time (UTC), i.e. for external synchronization.
On the other hand, Average TimeSynch (ATS) [10] and
Gradient Time Synchronization Protocol (GTSP) [9] are
designed to optimize the synchronization error between
the neighboring nodes. This optimization is achieved
in a completely decentralized way without employing
flooding: Nodes in the network synchronize to their
neighbors and there is not any special node which acts as
a time reference. Unfortunately, this approach lacks the
ability to provide synchronization to a stable time source
[11], [6]. In order to achieve external synchronization
in WSNs, flooding becomes essential and a reference
node which is synchronized to an external time source is
required. By flooding time information of the reference
node and internally synchronizing the remaining sensor
nodes to this node, network-wide synchronization can
be established.

We implemented FCSA on a real WSN platform and
compared its performance to FTSP, PulseSync and GTSP.
Experimental results collected from a line topology of 20
sensor nodes show that FCSA improves the performance
of GTSP remarkably and outperforms FTSP by a factor
of 26 in terms of synchronization error. Moreover, we
observed that FCSA exhibits a similar performance to
PulseSync on the line topology, but it is superior on
the grid topology where contention and congestion are
not negligible. Our simulations showed that these results
also hold on larger and denser networks.

The remainder of this paper is organized as follows.
We provide related work and our system model in
Section 2 and 3, respectively. We analyze the effect
of slow-flooding in FTSP in Section 4. We present
FCSA protocol in Section 5. Implementation details and
experimental results are given in Section 6. Simulation
results are presented in Section 7. Finally, Section 8 is the
conclusion.

2 RELATED WORK

There are considerable amount of protocol based
studies in the literature which focus on minimizing
synchronization errors in WSNs [12], [13], [14], [15],
[3], [16], [17], [4], [11], [6]. Among these protocols,
Flooding Time-Synchronization Protocol (FTSP) [3], the
de facto standard time synchronization protocol in
sensor networks, is designed to minimize the skew
between any two nodes in the network, i.e. global skew. In
FTSP, a dynamically elected reference node periodically
floods the value of its clock (current time information)
into the network. Using the flooded information, each
slave node uses least-squares regression in order to
establish a linear relationship between its hardware
clock and the clock of the reference node. Using this
relationship, each sensor node can predict future clock
values of the reference node without communicating
frequently. The nodes broadcast their predicted clock
values of the reference node to their neighbors for the
synchronization of the whole network. However, the
predicted time information is not broadcasted quickly
upon receiving a new synchronization message. Instead,
each node waits until the expiration of its broadcast
period. Due to the slow propagation speed of the flood
arising from the waiting times, the estimation error of
least-squares is amplified at each hop [4].

Lenzen et al. [4] proposed PulseSync protocol which
employs rapid-flooding in order to reduce the effect
of waiting times on the synchronization accuracy.
PulseSync propagates time information from a reference
node as fast as possible. Apart from the rapid flooding
approach, each node uses a linear regression table to
estimate the clock of the reference node, as in FTSP.
Although this protocol improves the performance of
FTSP drastically, rapid-flooding has several drawbacks
[4], [5], [6], [7], as we mentioned previously. Hence,
optimizing the performance of time synchronization
protocols which use slow-flooding without changing
the propagation speed of the flood and its message
complexity appears as an important open problem.

The method of forcing all nodes to agree on a
common clock speed, which we also employ in this
paper, has been introduced with Average TimeSynch
(ATS) [10] protocol. In addition to ATS, Gradient
Time Synchronization Protocol (GTSP) [9] whose main
objective is to minimize the clock skew between
neighboring nodes, i.e. local skew, also employs this
mechanism. Both ATS and GTSP do not require a
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reference node: All nodes in the network synchronize
to their neighbors. The clock values received from
neighboring nodes are used to agree on a common clock
value and clock speed. However, these studies do not
focus on the synchronization to a reference node, which
may be crucial if synchronization to a stable time source
(or a real-time through a GPS receiver) is required by
the sensor nodes [6].

3 SYSTEM MODEL

We model a WSN as a graph G = (V,E) where
V = {1, ..., n} and E ⊆ V × V represent the set of
n sensor nodes with unique identifiers and the set of
bidirectional communication links between the nodes,
respectively. Any node u ∈ V can communicate with
any other node v ∈ V to which it is directly connected
and these nodes are referred as the neighbors of node
u. Nu = {v ∈ V | {u, v} ∈ E} and |Nu| represent the set
of neighbors and the number of neighbors of node u,
respectively. The distance between any nodes u and v,
denoted by d(u, v), is defined as the number of edges on
the shortest path between those two nodes in the graph
G. The diameter of the graph G is the maximum distance
between any two nodes, which is denoted by D.

Each sensor node u is assumed to be equipped with
an unmodifiable hardware clock Hu(). The reading of the
hardware clock of the node u at real time t is defined as

Hu(t) =

t∫
0

hu(τ)dτ (1)

where hu(τ) represents the rate (speed) of the hardware
clock at time τ . External crystal oscillators in sensor
nodes are used as the clock source for their hardware
clocks and the frequencies of these oscillators exhibit a
drift between 30 and 100 ppm1. Therefore, it is assumed
that hardware clocks have bounded drifts such that for
all times t it holds that 1 − ε ≤ hu(t) ≤ 1 + ε where
0 < ε � 1. Since the hardware clocks of the nodes
drift apart and the nodes cannot modify their hardware
clocks, alternatively each node u maintains a logical clock
Lu() in order to acquire synchronized notion of time. The
value of the logical clock is calculated by considering the
hardware clock of that node and the information carried
by the synchronization messages received. The rate of
the logical clock Lu at time t is defined as

dLu(t)

dt
= lu(t)

dHu(t)

dt
= lu(t)hu(t) (2)

where lu(t) is called the rate multiplier of the logical clock
at that time. The nodes can adjust the speed of their
logical clocks by modifying their rate multipliers.

For any message, the time that passes from the start
of broadcast attempt until the recipient node receives

1. ppm=parts per million, i.e. 10−6.

Algorithm 1 FTSP pseudo-code for node v with a fixed
reference node whose node identifier is ROOT.
1: Initialization
2: seqv ← 0
3: start periodic timer with period B
4:
5: � Upon receiving < Lu, sequ > such that seqv < sequ
6: store (Hv, Lu) pair and recalculate least-squares line
7: seqv ← sequ
8:
9: � Upon timer timeout
10: if v = ROOT then seqv ← seqv + 1 endif
11: broadcast < Lv, seqv >

it is referred as message delay. In [18], [19], the message
delay is modeled as a Gaussian random variable due to
the central limit theorem because it is thought to be the
addition of numerous independent random processes.
It is also shown in [12] that the message delay can be
modeled as a Gaussian distributed random variable with
%99.8 confidence. Hence, it is assumed that the message
delay is a normally distributed random variable with
mean zero and variance σ2.

4 SLOW-FLOODING TIME INFORMATION IN
WSNS

In this section, we consider the execution of FTSP in
order to analyze the effect of waiting times on the
synchronization accuracy. The pseudo-code of FTSP with
a fixed reference node is given in Algorithm 1. It should
be noted that extra controls are omitted and only the
general strategy is presented in the pseudo-code. It is
also assumed that each node knows the identifier of the
reference node.

In FTSP, each node v stores a seqv variable which
stores the largest sequence number received from the
reference node. Initially, each node sets its sequence
number to zero and starts a periodic timer which will
fire at every B seconds (Lines 1-3). Upon receiving an
up-to-date synchronization message from any neighbor
u ∈ Nv (Line 5), v stores the synchronization point(
Hv(t

′
), L̂u(t

′
)
)

as a pair (x, Y ) in its least-squares table
(LST). This table has a capacity of N pairs to hold the
most recent N time information. Node v assumes a
linear relationship between its hardware clock and the
received logical clock values, i.e. the estimates of the
reference clock. Least-squares regression is performed by
using the stored pairs in order to calculate the estimated
regression line, i.e. least-squares line, which represents the
logical clock function of v (Line 6). Finally, the received
sequence number is stored (Line 7).

When a timeout event is generated (Line 9), the
sequence number is incremented if that node is the
reference node (Line 10). Otherwise, the sequence
number remains unchanged. It should be noted that
the increment of the sequence number implies that the
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reference node is initiating a new flooding round. Each
node broadcasts a message which carries the value
of its logical clock and its sequence number if it has
collected sufficient number of pairs to calculate its first
least-squares line (Line 11). The applications running on
sensor nodes query getReferenceTime interface in order
to acquire synchronized notion of time, which returns
the value of the logical clock calculated by using the
least-squares line, i.e. Lv .

4.1 The Drawbacks of Slow-Flooding By Employing
Linear Regression
In this subsection, we summarize our observations on
the poor performance of slow-flooding when linear
regression is employed. As observed, the crucial step
of FTSP is the calculation of the estimated regression
line which represents the logical clock. The slope of
this line can be considered as the estimated speed
(i.e. drift) of the reference clock with respect to the
hardware clock speed of the corresponding node. It can
be shown that the error of this multi-hop drift estimation
grows exponentially with the network diameter. The
magnitude of this error can be decreased by maintaining
a slope history for storing previously calculated slope
values and by considering the median or the average
slope value in this history as the current slope. However,
we observed that the synchronization performances of
these strategies are unsatisfactory and the exponential
growth of the estimation error cannot be eliminated.2

Due to the poor performance of the drift estimation,
waiting times at each hop until they propagate the flood
also amplify the estimation errors. Hence, slow-flooding
suffers from the growing error of the estimated reference
time at each hop and this situation leads to large
synchronization errors especially for the far-away nodes
from the reference node. Consequently, it can be
concluded that linear regression must not be performed
on time information which are originated by a far-away
node in slow-flooding based time synchronization.

As an alternative, nodes can be restricted to perform
linear regression in order to estimate relative hardware
clock speed of their neighbors. Hence, linear regression is
performed on time information which are originated by
direct neighbors of the current node (one hop away). By
flooding the estimated speed as well as the value of the
reference clock, network-wide synchronization can be
achieved. In order to estimate the speed of the reference
node, each node is required to multiply the received
estimated reference clock speed with the estimated clock
speed of the neighbor from which it received the latest
synchronization message. However, we observed that
this strategy also exhibits an estimation error which
grows exponentially with the network diameter.3

In conclusion, the undesired effect of waiting times
on the synchronization accuracy can be eliminated if the

2. See Section A of Appendix for the details.
3. See Section B of Appendix for the details.

Algorithm 2 FCSA pseudo-code for node v with a fixed
reference node whose node identifier is ROOT.
1: Initialization
2: clear repository and ∀u ∈ Nv set lu ← 1 and huv ← 1
3: basev ← 0; lastUpdatev ← 0;seqv ← 0
4: lv ← 1
5: set periodic timer with period B
6:
7: � Upon receiving < Lu, Hu, lu, sequ >
8: store (Hv, Hu) and estimate huv using least-squares
9: store (huv , lu) and update lv
10: if seqv < sequ
11: basev ← Lu
12: lastUpdatev ← Hv

13: seqv ← sequ
14: endif
15
16:� Upon timer timeout
17: if u = ROOT then sequ ← sequ + 1 endif
18: broadcast < Lv, Hv, lv, seqv >

error of the drift estimation is kept small. Hence, another
drift estimation strategy which does not exhibit an
exponential error with the network diameter is required.

5 SLOW-FLOODING WITH CLOCK SPEED
AGREEMENT

In this section, we describe Flooding With Clock Speed
Agreement (FCSA) approach, where all nodes agree on a
common logical clock speed by employing a clock speed
agreement algorithm and synchronize to a reference
node which floods stable time for the whole network. As
a consequence, the amplification of estimation errors due
to the waiting times is minimized and a synchronization
error which grows with the square root of the network
diameter is obtained. The pseudo-code of the FCSA
algorithm is presented in Algorithm 2.

Any node v ∈ V executing FCSA maintains a lv
variable, i.e. the rate multiplier, which is adjusted to
speed up or slow down the progress of its logical
clock. In FCSA, the logical clock value at any time t is
calculated as follows:

Lv(t) = basev(t)

+ (Hv(t)− lastUpdatev(t)) lv(t). (3)

The variable basev is required to store the reference clock
estimate carried by the most recent synchronization
message received and lastUpdatev holds the hardware
clock reading at the time at which basev variable is
updated. It can be noticed from the equation 3 that Lv
is calculated by adding up the amount of progress since
the latest update of the base value.

Node v maintains a repository in order to keep track of
of the relative hardware clock rates and rate multipliers
of its neighbors. Due to the memory constraints of the
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sensor nodes, the amount of memory dedicated to this
repository must be specified in advance. Hence, the
maximum number of neighbors of a sensor node and
the data stored for each neighbor are limited. When
v is powered on, the neighbor repository is cleared,
the estimated relative hardware clock rates and rate
multipliers kept for each neighbor are initialized to 1
(Line 2). seqv variable which stores the largest sequence
number received from the reference node, basev and
lastUpdatev variables are initialized to zero (Line 3). The
rate multiplier of the current node is set to one (Line
4). Moreover, a periodic timer is started which will fire
every time the hardware clock progresses B units (Line
5).

Each time a synchronization message is received from
any neighboring node u ∈ Nv , the (Hv, Hu) pair and the
estimated relative hardware clock rate huv is stored in the
slot assigned for that neighbor in the repository (Lines
7-8). It should be noted that the slope of the least-squares
line which is calculated by using (Hv, Hu) pairs, is an
estimate for the relative hardware clock rate hu/hv . The
main point of FCSA is the Line 9 of the Algorithm 2.
Using the values of huv and lu stored for each u ∈ Nv ,
the rate multiplier of v is updated as follows (Line 9):

lv(t
+) =

lv(t) +
∑
u∈Nv

huv (t).lu(t)

|Nv|+ 1
. (4)

such that t+ denotes the time just after the update
operation. With this execution, it can be proven
theoretically that all nodes agree on a common logical
clock speed hv.lv .4

While performing logical clock speed agreement, the
estimated clock value of the reference node carried
by the message is also considered to update the base
value of the logical clock. If the received synchronization
message carries a higher sequence number (Line 10),
this situation indicates that the reference node has
recently flooded its current logical clock value into the
network. Hence, v sets the base value of its logical
clock to the received logical clock value (Line 11). The
hardware clock of v is stored at lastUpdatev (Line 12)
and the sequence number is updated (Line 13). With
this execution, each received synchronization message
is considered to update the new value of the rate
multiplier. However, only the messages which belong
to the new synchronization round (which carry higher
sequence numbers) are considered to update the value
of the logical clock.

When a timeout event is generated (Line 16), only
the reference node increments its sequence number
and initiates a new flooding round (Line 17). Each
node broadcasts a message which carries the value of
its logical clock, hardware clock, rate multiplier and
sequence number (Line 18).

After the clock speed agreement is established, all
nodes run at the same clock speed and the amplification

4. See Section C of Appendix.

of the estimation errors due to waiting times are
eliminated. The only error source is the uncertainties
through the message path. As a consequence, we reach
the following theorem:

Theorem 5.1: The synchronization error of FCSA grows
with the square root of the network diameter.

Proof: See section C of the Appendix for the proof.

5.1 Synchronization to the Real-Time
If the reference node is equipped with a GPS receiver
and has access to real-time, by taking two observations
of real-time t0 and t1 such that t0 < t1 after all of the
nodes agreed on a common clock rate, it can estimate its
hardware clock rate as

ĥr = (Hr(t1)−Hr(t0))/(t1 − t0). (5)

Using this value, the reference node can also estimate
the common logical clock speed ŝ = ĥr.lr inside the
network after the clock speed agreement. By extending
the synchronization messages such that they also carry
the real-time value t and the estimate of common logical
clock speed ŝ, each node v can estimate the speed of its
hardware clock as ĥv = ŝ/lv since it knows the value of
lv . Node v can also estimate the real-time value at any
time using the equation

rtv(t) = rtbasev(t)

+(Hv(t)− lastUpdatev(t))/ĥv(t). (6)

such that the variable rtbasev is required to store the
value of the real-time value carried by the most recent
synchronization message received.

5.2 Reference Node Election
As shown in Algorithm 2, the reference node is
predefined before the deployment of the sensor
network. Hence, FCSA cannot maintain network-wide
synchronization in case of a reference node failure.
However, the simple root election mechanism employed
in FTSP protocol, i.e. electing the node with the smallest
identifier among the remaining nodes as the new
reference node, can easily be integrated to FCSA.

5.3 Neighbor Detection And Removal
FCSA can be implemented by employing a simple
neighbor detection and removal strategy. Whenever a
sensor node receives a synchronization message from
a new neighbor, it assigns a free slot for that neighbor
and starts collecting its information. If any node does
not receive a synchronization message from one of its
neighbors for a predefined amount of time, it empties the
slot which is assigned for that neighbor in the neighbor
repository. As a final point, when a new node joins
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the network, it does not participate in the clock speed
agreement immediately. Instead, it first listens a few
synchronization packets from its neighbors in order to
achieve initial synchronization.

It is infeasible for sensor nodes to keep track of all their
neighbors when the number of their neighbors is greater
than the capacity of their neighbor repository which is
specified in advance. The decision of which neighbors
to keep track and which ones to discard is a crucial
problem. The communication graph, constructed by
considering the neighborhood relations in the neighbor
repositories of the sensor nodes, needs to be connected
for all times in order to achieve clock speed agreement.
One simple solution which prevents the occurrence of
this problem is to specify the capacity of the repository
as the maximum node degree in the network. However,
due to the memory constraints, this solution may not
work for networks with high neighborhood density.

6 TESTBED EXPERIMENTS

In this section, we present experimental results in order
to verify that our theoretical findings are consistent
with the practice. We implemented FCSA in TinyOS
2.1.15 for our experiments. Since our main attention is
flooding based time synchronization, we considered two
flooding based time synchronization protocols FTSP and
PulseSync for performance comparison. Moreover, we
also wanted to make a comparison of FCSA with GTSP
since it also employs the same clock speed agreement.
We used the publicly available implementation of FTSP
in TinyOS. Since PulseSync and GTSP do not have any
publicly available implementation, we also implemented
them in TinyOS ourselves.

For the evaluation, we considered the instantaneous
differences between the logical clocks of the nodes, i.e.
clock skew. We focused on the largest clock skew between
any two nodes, i.e. global skew, and between neighboring
nodes, i.e. local skew. We also took into account the
average global skew which is defined as the instantaneous
average of the global skew and the average local skew
which is defined as the instantaneous average of the local
skew by considering all nodes.

6.1 Hardware Platform

The hardware platform used for the implementation and
experiments is MICAz from Memsic6. We used 7.37 MHz
quartz oscillator on the MICAz board as the clock source
for the timer used for getting the local time. The timer
operates at 1/8 of that frequency and thus each timer tick
occurs at approximately every 921 kHz (approximately
1 microsecond). For MAC layer timestamping, we used
CC2420 radio chip implementation of packet level time
synchronization interfaces [20] provided by TinyOS.

5. http://www.tinyos.net
6. http://www.memsic.com

Table 1: Summary of the experimental measurements on the line
topology.

FTSP PulseSync FCSA GTSP

Max. Global Skew 669 µsec 25 µsec 25 µsec 34 µsec

Avg. Global Skew 538 µsec 18 µsec 19 µsec 26 µsec

Max. Local Skew 519 µsec 8 µsec 16 µsec 10 µsec

Avg. Local Skew 74 µsec 2 µsec 5 µsec 4 µsec

6.2 Testbed Setup
For our experiments, we constructed a line and a 4x5
grid topology of 20 sensor nodes. We have chosen the
line topology since the performance of the slow-flooding
degrades as the diameter of the network increases and
we could get larger diameters with this topology [4].
Grid topology allowed us to compare the performances
of slow and rapid flooding approaches when contention
and congestion are not negligible as in the line
topology. During the experiments each of which took
approximately 20000 seconds, the beacon period was 30
seconds and the number of entries for the protocol tables,
i.e. regression table and neighbor repository, was 8. The
environmental conditions were quite stable and there
were not sudden temperature changes. We powered
on sensor nodes randomly in the first 3 minutes. We
collected clock values from all sensor nodes at the end of
each interval which is uniformly distributed between 20
and 23 seconds during the experiments. At the beginning
of each interval, the reference broadcaster node transmits
a packet. This message is received approximately at
the same time by all nodes. Then, the nodes broadcast
their clock values and rate multipliers at the receipt
time of this packet. The base station node attached to
a PC transfers these messages to the serial port. An
application listening the serial port logs these messages.
Hence, the logical clock values and rate multipliers of
the nodes at specific time instants have been collected
during the experiments. At the end of the experiments,
the evaluation metrics are applied to the collected data
and the results are analyzed.

6.3 Experimental Results
Figures 1 and 2 show the global and local skew
values, the skew values to the reference node and
the slope values of the estimated regression line (or
alternatively rate multipliers) during the experiments
on the line topology with FTSP, PulseSync, FCSA and
GTSP, respectively. Table 1 summarizes the skew values
observed during these experiments. It should be noted
that node 1 is the time reference for the other nodes in
the network for FTSP, PulseSync and FCSA.

It can be observed that as the distance from the node
1 gets larger, the collected slope values show quite
variability and they are unstable for FTSP. If node with
identifier 20 is considered, the amplitude of the variation
of its slope values is much higher than that of the slope
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(a) FTSP

(b) PulseSync

(c) FCSA

(d) GTSP

Figure 1: Global skew (left column), local skew (middle column) and the maximum synchronization error versus distance from the reference
(root) node 1 (right column) on the line topology for FTSP, PulseSync, FCSA and GTSP, respectively.

values of the other nodes. This poor performance of the
drift estimation has lead to large skew values especially
for the far-away nodes from the reference node. Hence,
FTSP exhibited quite large global and local skew values.

It can be concluded that PulseSync reduced the error
of the drift estimation considerably when compared to
FTSP since it employs a rapid flooding approach and
reduces the amplification of the estimation errors at
each hop. However, far-away nodes from the reference
node still suffer from relatively higher slope variations
when compared to the nearby nodes to the reference.
But these variations are dramatically smaller than that in
FTSP. The rapid flooding strategy reduced the estimation
errors considerably. Hence, PulseSync achieved quite
tight synchronization in terms of local and global skew
during the experiments.

As can be observed, the negative effect of
slow-flooding on the scalability is reduced considerably
with the clock speed agreement employed by FCSA.
Since the rate multipliers are quite stable, the estimation
errors of the far-away nodes are small when compared
to FTSP. It can be concluded that FCSA outperforms
FTSP quite significantly and catches the performance of
PulseSync although it does not change the propagation
speed of the flood, employs an identical message
pattern and has the same message complexity. If
maximum global skew is considered, FCSA improved
the performance of FTSP approximately by a factor of
26 and performed nearly the same when compared to
PulseSync. On the other hand, the local skew values
observed with PulseSync were smaller than that of with
FCSA, as expected. The reason is that nodes get the
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(a) FTSP (b) PulseSync (c) FCSA (d) GTSP

Figure 2: The slope of the estimated regression line (from which 1.0 is subtracted) on the line topology for FTSP and PulseSync, rate multipliers
(from which 1.0 is subtracted) for FCSA and GTSP, respectively.

(a) PulseSync

(b) FCSA

Figure 3: Global skew (left column), local skew (middle column) and the slope of the estimated regression line/rate multipliers from which 1.0
is subtracted (right column) on the 5x4 grid topology for PulseSync and FCSA.

recent time information of the reference node and update
themselves much more quickly with rapid-flooding and
this eliminates the occurrence of large instant local
skews when compared to slow-flooding.

With FCSA, the initial network wide synchronization
was achieved approximately at the 400th second, which
took shorter than that with FTSP, which was established
approximately at the 2000th second. The global skew of
FCSA was 390 µsec at that time. The actual performance
of FCSA can be observed as soon as the clock speed
agreement is established. In the experiments, tight
synchronization was achieved approximately at the
5000th second. Although FCSA requires longer time
for tight synchronization, the synchronization error was
still within acceptable boundaries, i.e. between 390µs
and 30µs, in the interval [400-5000] until agreement is
achieved.

The main objective of GTSP is to provide tight
synchronization between neighboring nodes by
employing a clock speed and then a clock value
agreement (by considering the clock values of their
neighboring nodes) among the neighboring sensor
nodes. However, this two-phase agreement increased
the time the agreement took (agreement was established
at approximately 10000th second of the experiments)

Table 2: Summary of the experimental measurements on the 5x4 grid
topology.

PulseSync FCSA

Max. Global Skew 18 µsec 14 µsec

Avg. Global Skew 13 µsec 11 µsec

Max. Local Skew 12 µsec 10 µsec

Avg. Local Skew 5 µsec 4 µsec

and we observed increased global skew with this
mechanism when compared to FCSA. Since there is not
any reference node and any flooding mechanism, the
synchronization errors of far-away and nearby nodes to
the node 1 are quite similar in GTSP, as can be observed
from the Figure 1. Moreover, the local skew of GTSP
is smaller than that of FCSA since FCSA only employs
clock speed agreement and nodes agree on the clock
value of the reference node by considering the flooded
time information of this node, not considering the
time information of their neighboring nodes. However,
this mechanism allows FCSA to be used for external
synchronization, which makes it superior than GTSP.

In order to clarify the shortcomings of the fast-flooding
approach, we also performed experiments on the 5x4
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grid topology and hence compared the performances of
PulseSync and FCSA when the neighborhood density is
increased. Figure 3 shows the experimental results and
Table 2 presents the summary of the observed skew
values on this topology. PulseSync requires that time
information must be propagated quickly and reliably
through the network with the pulses. However, due
to neighborhood contention and increased rate of the
packet losses, rapid-flooding on the grid topology is
difficult when compared to that on the line topology.
It can be observed that the global and local skews of
FCSA is superior than those of PulseSync on the grid
topology. The rate multipliers of the nodes executing
FCSA are quite stable when compared to those of the
nodes of executing PulseSync. These results suggest
that the slow-flooding based FCSA is superior when
contention and congestion are not negligible in a sensor
network.

As a summary of our experiments, it can be concluded
that FCSA achieves the tight synchronization quality of
rapid-flooding by employing slow-flooding and clock
speed agreement together although it does not change
the communication frequency.

7 SIMULATIONS

Our experimental results collected from a small network
showed that the PulseSync and FCSA exhibit quite
comparable synchronization errors and GTSP is the
worst among them in terms of synchronization accuracy.
We wanted to observe if this situation also holds on
networks with larger diameters. Hence, in addition
to real-world experiments, we implemented FCSA,
GTSP and PulseSync in our WSN simulator which
we implemented with Java programming language
to compare their performances on longer networks.
During our simulations, we implemented the hardware
clocks of nodes in software with a drift which is
uniformly distributed between ±50 ppm. We modeled
the variances in the message delay with a normally
distributed random variable. We applied our evaluation
metrics for line topology with different diameters. For
each diameter, we performed 10 simulation runs and
averaged the calculated skews for these runs. Figure 4
presents the maximum synchronization error observed
during the simulations. It can be concluded that the
performances of FCSA and PulseSync are also quite
comparable and their synchronization error grow quite
similarly and substantially slowly with the network
diameter. As in the real-world experiments, GTSP
exhibited the worst synchronization performance during
the simulations.

In order to observe the behavior of FCSA when the
neighborhood density is increased, we also performed
simulations on grid and line topologies with the
same diameters. Table 3 presents a summary of these
simulations. It can be concluded that as the number of
neighbors of sensor nodes increases, the time required

Figure 4: Simulation results on the line topology with different
diameters.

Table 3: Simulation results of FCSA on grid and line topologies.

Agreement Time Max. Global

4x4 Grid vs Line 6 750 s / 750 s 16 µsec / 15 µsec

8x8 Grid vs Line 14 2200 s / 4500 s 26 µsec / 30 µsec

16x16 Grid vs Line 30 8500 s / 12000 s 49 µsec / 48 µsec

32x32 Grid vs Line 62 22000 s / 108000 s 64 µsec / 94 µsec

until all nodes agree on a common clock speed decreases.
On the line topology, the messages originated from the
reference node follow the same path to reach the node
at the end of the network. On the contrary to the line
topology, the synchronization messages of the reference
node may follow many paths in order to reach to the
far-away nodes on the grid topology and far-away nodes
may collect time information with smaller error. We
observed quite similar skew values with grid and line
topologies for diameters up to 30. However, we observed
smaller synchronization error with the grid topology
when the diameter is 62.

We also performed simulations in order to evaluate
the adaptation of FCSA and PulseSync to the changing
environmental conditions. Please see Appendix D for
the details. We conclude from our simulations that
the adaptation time of FCSA is not too long when
compared to PulseSync. Hence, FCSA is also desirable
when environmental conditions are prone to change
frequently.

8 CONCLUSION AND FUTURE WORK

In this study, we considered the question of whether it
is possible to achieve scalable and tight synchronization
in WSNs with slow flooding. We emphasized that
the performance of drift estimation mechanism is vital
for flooding based time synchronization protocols. We
pointed out that waiting times due to slow-flooding
with multi-hop least-squares drift estimation amplifies
the estimation errors at each hop. Hence, we revealed
that the smaller the error of the drift estimation and
hence the difference between the speeds of the clocks,
the smaller the undesired effect of waiting times on
the synchronization accuracy. As a main contribution
of this paper, we showed that the synchronization
quality of slow-flooding based time synchronization
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can drastically be improved by employing a clock
speed agreement algorithm among the sensor nodes.
We introduced Flooding With Clock Speed Agreement
(FCSA) protocol which forces all nodes to run at the
same speed by employing an agreement algorithm
and synchronizes them to a reference node which
floods stable time for the whole network. We presented
the synchronization accuracy of this protocol in our
experimental testbed and compared its performance
to FTSP protocol which also employs slow-flooding,
to PulseSync protocol which employs rapid-flooding
approach and to GTSP which employs clock speed
agreement but not flooding. It can be concluded from our
experiments on the line topology that FCSA improves
the performance of GTSP remarkably and outperforms
FTSP by a factor of 26. Moreover, FCSA catches the
performance of PulseSync on the line topology and it
is superior on the grid topology where congestion and
contention are not negligible. Our simulations showed
that these conclusions also hold on larger and denser
networks.

Although FCSA decreased the time required to
achieve initial network-wide synchronization, it requires
a long time until quite tight synchronization is achieved.
For the line topology of 20 sensor nodes, it took
approximately 5000 seconds (approximately 1.5 hours)
for nodes to establish clock speed agreement to
achieve tight synchronization. We leave speeding up
the agreement time as a future work. Secondly, the
clock speed agreement may not be achieved in networks
with high neighborhood density, since the network
graph which is constructed by considering the neighbor
repositories of the sensor nodes may loss its connectivity
due to the limited capacity of these repositories. We leave
devising a solution to the problem of deciding which
neighbors to keep track and which neighbors to discard
while preserving connectivity as an important future
work. Finally, we plan to evaluate the performance of
FCSA in synchronization to the real time.
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APPENDIX A
SYNCHRONIZATION ERROR OF
SLOW-FLOODING WITH LEAST-SQUARES
REGRESSION

In least-squares regression, the linear relationship
between the collected {(xi, Yi) ∈ LST |i = 0, .., N − 1}
pairs is modeled as Yi = α + βxi + εi, such that
εi ∼ N (0, σ2). If we let x =

∑
xi/N , Y =

∑
Yi/N ,

Sxx =
∑

(xi − x)2 and SxY =
∑

(xi − x)Yi, the slope
β̂ and the intercept α̂ of the least-squares line Ŷ = α̂+ β̂x
are computed as [21]:

β̂ = SxY /Sxx, (7)
α̂ = Y − β̂x. (8)

Upon receiving a new synchronization message, the
earliest pair is removed from LST, the received pair is
stored in LST and the least-squares line is recalculated.
Hence, the intercept and the slope of the least-squares
line may change at each synchronization message
receipt. By using the recently calculated least-squares
line, any node v can predict Y values which will be
received in the future. The distribution of Yx′−Ŷx′ , which
represents the error between the predicted and the actual
Y value at a single future point x

′
is given as follows

[21]:

Yx′ − Ŷx′ ∼ N

(
0, σ2

(
1 +

1

N
+

(x
′ − x)2

Sxx

))
. (9)

Hence, the larger the difference between x
′

= Hv(t)
and x, the larger the error of the predicted reference
clock value Lv(t). It should be noted that until a recent
(x, Y ) pair is collected and the new least-squares line
is recalculated, the value of Hv(t) − x increases as time
passes. Whenever a recent (x, Y ) pair is collected, the
value of Hv(t)−x decreases upon the recalculation of the
least-squares line. This situation leads us to the following
fact.

Fact 1: From the time at which any node v ∈ V
calculated its current least-squares line to the time at
which the new least-squares line will be calculated upon
receiving a new synchronization point, the variance of
the estimated reference clock values increases. Hence,
slow-flooding suffers from the growing error of the
estimated reference time due to the waiting times at each
sensor node until they propagate the flood.

We now present an analysis of FTSP by following the
analysis presented in [4], [6]. Since the analysis becomes
more complex for the larger sizes of LST, the size of the
LST is considered as N = 2 for simplicity. For this case,
the intercept α̂ and the slope β̂ of the initial estimated
regression line are calculated by considering only two
pairs (x0, y0) and (x1, y1) in LST as follows:

β̂ =

1∑
i=0

(xi − x)yi

1∑
i=0

(xi − x) 2

=
y1 − y0

x1 − x0
, (10)

α̂ =
y1 + y0

2
− β̂

(
x1 + x0

2

)
. (11)

Upon receiving a new message, the earliest pair is
removed from LST and the recently received pair is
stored. Then, the intercept and the slope of the estimated
regression line are re-calculated by considering the pairs
in LST.

Now, consider the execution of FTSP on a line of n
nodes vo, v1, ..., vn−1 ∈ V such that v0 is the reference
node. During the execution, v1 collects synchronization
messages from the reference node v0 which carry
independent hardware clock readings. v1 stores the
received time information as (x1i, y0i) such that y0i

represents the ith received time information from v0 and
x1i represents the corresponding hardware clock value
of v1. Each received y0i suffers from an independent
error ε0i ∼ N (0, σ2) which occurred due to the message
delays. After v1 has collected two messages, it establishes
a linear relationship between its hardware clock and
the hardware clock of the reference node as y0i = α +
βx1i + ε0i. In order to estimate the real intercept α and
the real slope β parameters, v1 performs least-squares
regression. The variance of the estimated slope β̂1i which
is calculated by considering the pairs (x1i, y0i) and
(x1(i+1), y0(i+1)) can be obtained as follows:

V ar(β̂1i) = V ar(
y0(i+1) − y0i

x1(i+1) − x1i
)

=
2σ2

(x1(i+1) − x1i)2
. (12)

Let 41i denotes the difference of hardware clock
readings of v1 at the receipt time of the (i+1)th and ith
synchronization message from v0, i.e. 41i = x1(i+1)−x1i.
For simplicity, assume that 41i = 41 holds for all i.
Then, the variance of β̂1i can be written as follows:

V ar(β̂1i) =
2σ2

∆2
1

. (13)

Nodes can estimate future hardware clock values of
the reference node by using their estimated regression
lines and hardware clock readings. Upon receiving a
synchronization message and updating the estimated
regression line, each node waits an amount of time
and broadcasts its estimate about the hardware clock
of the reference node in order to achieve network-wide
synchronization. Let ẋ1i be the hardware clock value at
which v1 broadcasted its ith estimate y1i. By using the
estimated regression line, this estimate is calculated as
follows:
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y1i =
y0(i+1) + y0i

2
+ β̂1i(ẋ1i −

x1(i+1) + x1i

2
). (14)

Assume that ẋ1i > x1(i+1) +
x1(i+1)−x1i

2 holds. This
means that more than x1(i+1)−x1i

2 hardware clock ticks
are waited after the message receipt at local time x1(i+1)

in order to broadcast the estimate y1i. We assume that
each node waits approximately the same amount of local
time (hardware clock progress) in order to propagate
its estimate to its neighboring nodes upon a message
receipt. Hence, we assume that ẋ1i −

x1(i+1)+x1i

2 = W >

41. If we denote y0(i+1)+y0i
2 by y0i, the equality above

can be written as follows:

y1i = y0i + β̂1iW. (15)

In order to calculate the variance of this estimate, we
are required to calculate V ar(y0i) and cov(y0i, β̂1i). These
calculations are performed by applying the following
steps:

V ar(y0i) = V ar(
y0(i+1) + y0i

2
) =

σ2

2
. (16)

Cov(y0i, β̂1i) = Cov(
y0(i+1) + y0i

2
,
y0(i+1) − y0i

x1(i+1) − x1i
)

=
V ar(y0(i+1))− V ar(y0i)

2(x1(i+1) − x1i)
= 0. (17)

The last step holds since y0(i+1) and y0i are independent,
hence cov(y0(i+1), y0i) = 0. By using the equalities above,
the variance of y1i is calculated as follows:

V ar(y1i) = V ar(y0i) +W 2V ar(β̂1i)

+2WCov(y0i, β̂1i))

= σ2

(
1

2
+

2W 2

∆2
1

)
. (18)

In the following steps of our analysis, we require the
covariance of two estimates y1(i+1) and y1i which are
broadcasted successively by node v1. This covariance is
obtained as follows:

Cov(y1(i+1), y1i) = Cov(y0(i+1) + β̂1(i+1)W, y0i + β̂1iW )

= Cov(y0(i+1), y0i)

+WCov(y0(i+1), β̂1i)

+WCov(y0i, β̂1(i+1))

+W 2Cov(β̂1(i+1), β̂1i)

= V ar(y0(i+1))(
1

4
− W 2

∆2
1

)

= σ2

(
1

4
− W 2

∆2
1

)
. (19)

It should be noted that the covariance of two
nonsuccessive estimates is zero since their calculations
do not include any common term. For instance, y1i is
calculated by considering y0i and y0(i+1) where y1(i+2)

is calculated by considering y0(i+3) and y0(i+2).
Now, we focus on node v2 which collects

synchronization messages from v1 carrying estimates
y1i. Apart from their estimation errors, these
estimates suffer from an additional independent error
ε1i ∼ N (0, σ2) occurred due to the message delays.
After v2 has collected two messages, it establishes
a linear relationship between its hardware clock
and the hardware clock of the reference node as
y1i = α + βx2i + ε1i. After performing least-squares
regression, the variance of the estimated slope β̂2i

which is calculated by considering the pairs (x2i, y1i)
and (x2(i+1), y1(i+1)) can be obtained as follows:

V ar(β̂2i) = V ar(
y1(i+1) − y1i

x2(i+1) − x2i
)

=
1

∆2
2

(V ar(y1(i+1)) + V ar(y1i)

−2Cov(y1(i+1), y1i) + 2σ2)

=
σ2

∆2
2

(
5

2
+

6W 2

∆2
1

)
. (20)

If it is assumed that W > 4i for all i, the variance of β̂2i

becomes approximately a factor of W 2

∆2
2

greater than the

variance of β̂1i.
v2 broadcasts its estimates about the future hardware

clock values of the reference node by using its estimated
regression line and its hardware clock reading. The ith
broadcasted estimate of v2 is given as follows:

y2i = y1i + β̂2iW. (21)

In order to calculate the variance of this estimate, we are
required to calculate V ar(y1i) and cov(y1i, β̂2i), which we
obtain by applying the following steps:

V ar(y1i) = V ar(
y1(i+1) + y1i

2
)

=
1

4
(V ar(y1(i+1)) + V ar(y1i)

+2Cov(y1(i+1), y1i)) + 2σ2)

= σ2

(
7

8
+
W 2

2∆2
1

)
. (22)

Cov(y1i, β̂2i) = Cov(
y1(i+1) + y1i

2
,
y1(i+1) − y1i

x2(i+1) − x2i
)

=
V ar(y1(i+1))− V ar(y1i)

2(x2(i+1) − x2i)
= 0. (23)

By using these results, we get the variance of y2i as
follows:
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V ar(y2i) = V ar(y1i) +W 2V ar(β̂2i)

= σ2

(
7

8
+

2W 2

∆2
1

+
5W 2

2∆2
2

+
6W 4

∆2
1∆2

2

)
. (24)

Finally, the covariance of two successive estimates
y2(i+1) and y2i of node v2 can be obtained as follows:

Cov(y2(i+1), y2i) = (
1

4
− W 2

∆2
2

)V ar(y1(i+1))

= σ2

(
1

4
− W 2

∆2
2

)(
1

2
+

2W 2

∆2
1

)
= σ2

(
1

8
+
W 2

2∆2
1

− W 2

2∆2
2

− 2W 4

∆2
1∆2

2

)
.(25)

By using these results, the variance of the slope of
the estimated regression line β̂3i of v3 can be given as
follows:

V ar(β̂3i) = V ar(
y2(i+1) − y2i

x3(i+1) − x3i
)

=
1

∆2
3

(V ar(y2(i+1)) + V ar(y2i)

−2Cov(y2(i+1), y2i) + 2σ2)

=
σ2

∆2
3

(
7

2
+

3W 2

∆2
1

+
6W 2

∆2
2

+
16W 4

∆2
1∆2

2

)
.(26)

It can be observed that the variance of β̂3i is
approximately a factor of W 4

∆2
3∆2

2
greater than the variance

of β̂1i. With this execution, the variance β̂(n−1)i of the
slope of the estimated regression line calculated by vn−1

becomes a factor of
∏n−1
j=2

W 2

∆2
j

greater than the variance

of β̂1i. If 1 < F ≤ W 2

∆2
i

holds for all i, we reach to the
following facts.

Fact 2: During the execution of slow-flooding, the
variance of the estimated relative clock rate is amplified
at each hop vi ∈ V approximately by a factor of F .

Fact 3: As the distance from the reference node
increases, far-away nodes collect time information with
larger deviations. Thus, their estimation errors are larger
than those of the closer nodes to the reference.

Theorem A.1: The variance of the relative drift
estimation of node vk ∈ V is on the order of O(Fk−1).

It should be noted that the exponential behavior of
this multi-hop drift estimation with larger sizes of the
LST table has been observed by simulations in [4].

APPENDIX B
IMPROVING THE PERFORMANCE OF
SLOW-FLOODING

As stated in the previous section, the variance of
the drift estimation with slow flooding is amplified
by approximately a factor of F at each hop. Since
nodes do not quickly propagate the flood, slow-flooding
suffers from the large values of F , which leads to

large synchronization errors. In this section, we will
propose new methods which reduce the amplification
of errors at each hop and improves the performance of
slow-flooding without changing the propagation speed
of the flood and its message complexity. In subsection
B.1, we propose three methods in order to decrease
the variance of the slope of the least-squares line. In
subsection B.2, we propose another new method which
floods the estimated relative rate and the estimated
value of the reference clock together, which reduces the
effect of waiting times on the synchronization accuracy
considerably.

B.1 Slow-Flooding By Using a Slope History

The probability distribution of the estimates which are
calculated by using the least squares line depends on the
probability distribution of the slope of this line, which
is given as follows [21]:

β̂ ∼ N
(
β, σ2/Sxx

)
. (27)

If the variance of this probability distribution is
decreased, the estimation errors will also be decreased.
Within this context, we propose three methods which
require each node to maintain a slope history (SH)
for holding recently calculated N slope values of
the least-squares line. Hence, it is required that
whenever any node recalculates the parameters of its
least-squares line (Line 6 of Algorithm 1), it removes
the earliest calculated slope value from SH and stores
the recently calculated slope value in SH. Our methods
modify getReferenceTime interface in such a way that
they consider the values in SH when calculating
synchronized notion of time for the applications, rather
than returning the value of the logical clock which is
calculated by using the current least-squares line.

B.1.1 Considering the Median Slope in SH (MS)

In least-squares, even a single synchronization point
with a large error may distort the slope of the estimated
regression line. It is well known that median based
methods lead to robust regression lines [22], [23]. By
using this reality, we propose considering the median
slope in SH when returning synchronized notion of time
to the applications. Hence, getReferenceTime interface
on any node v is modified to return the value of
α̂med + β̂medHv(t) at any time t such that β̂med =
median {βi ∈ SH, |i = 0..N − 1} and α̂med = Y − β̂medx.
We claim that the variance of β̂med is smaller than that of
β̂, since β̂med is more robust to points with large errors. A
disadvantage of MS is that it considers only the median
slope as the slope of the estimated regression line. Hence,
other slope values in SH have zero weight during the
calculation of β̂med.
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B.1.2 Considering the Average Slope in SH (AS)
Similar to the median based approach, we now propose
considering the average slope in SH when returning
synchronized notion of time to the applications. Hence,
getReferenceTime interface on any node v is modified to
return the value of α̂avg + β̂avgHv(t) at any time t such
that β̂avg =

∑
βi∈SH

βi/N and α̂avg = Y − β̂avgx. It should

be noted that all of the slope values in SH have equal
weight during the calculation of β̂avg . Since each slope in
SH is an independent estimate of the slope of the real
regression line, the variance of β̂avg is smaller than that
of β̂ by a factor of 1/N .

B.1.3 Considering the Average Slope in SH Together
With the Slope of the Recently Calculated Least-Squares
Line (ACS)
When the values in SH have large errors, taking their
average or median may reduce the estimation errors.
However, when a more accurate slope value is obtained
by the recently calculated least-squares line, previous
slope values with large errors in SH may diminish
the contribution of this value. In order to prevent this
situation, we now propose taking the average of the
average slope in SH and the slope of the current
least-squares line. The value of α̂acs + β̂acsHv(t) is
returned by getReferenceTime interface at any time t such
that β̂acs = (β̂ + β̂avg)/2 and α̂acs = Y − β̂acsx. Hence,
during the calculation of β̂acs, the recently calculated
least-squares slope β̂ has more weight than the other slope
values in SH. Since each slope in SH, including β̂, is an
independent estimate of the slope of the real regression
line, the variance of β̂acs is smaller than that of β̂ by a
factor of N+1

4N .

B.1.4 Experimental Results For The Methods Which
Use Slope History
For this experiment, we modified FTSP in such a way
that in addition to the reference clock estimation by
using least-squares, we integrated a slope history with a
size of 8 entries and allowed the nodes to estimate the
reference clock by using the presented slope methods.
As a final modification, we added an interface in
order for applications to query the estimated reference
time calculated by using these methods. With such
modifications to FTSP, we could evaluate all strategies
under identical message delays, packet loss rates and
environmental conditions.

Figure 5 shows the global/local skew values and the
skew values to the reference node, and Figure 6 shows
the slope values of the estimated regression line node
during the experiments on the line topology of 20 sensor
nodes. For comparison of the proposed methods, we
considered the skew values just after all of the entries
in the slope tables of the nodes are filled, which took
approximately 7000 seconds. The summary of these
values are presented in Table 4.

Table 4: Summary of the experimental measurements with FTSP by
modifying its least-squares slope estimation.

LS MS AS ACS

Max. Global Skew 526 µsec 479 µsec 426 µsec 371 µsec

Avg. Global Skew 396 µsec 402 µsec 349 µsec 305 µsec

Max. Local Skew 357 µsec 384 µsec 239 µsec 196 µsec

Avg. Local Skew 54 µsec 52 µsec 39 µsec 34 µsec

When compared to LS (least squares), MS decreased
maximum global and average local skews. On the
other hand, we observed increased average global and
maximum local skew values. Although the collected
slope values were more stable with MS, the maximum
skew values to the reference node for the far-away nodes
were quite comparable to LS. It can be concluded that the
performances of MS and LS are quite similar. We think
the reason is that MS decides only one of the values in
the slope table as the slope for the estimated regression
line and it does not take into account other values in the
slope table. Hence, MS suffers from the fact that a more
accurate slope value may not be selected since it may
not be the median of the slopes in the slope history.

The maximum and average values of the global and
local skew as well as the skew between the reference
node and far-away nodes were decreased with AS when
compared to LS and MS. We observed that at the time
instants such that LS exhibited quite variable slope
values for the far-away nodes, AS reduced this variation
as in MS but the slope values change more smoothly.
The superiority of AS over MS and LS is due to the fact
that it takes into account all of the slopes in the slope
history. On the other hand, we obtained smaller skew
and more stable slope values with ACS than with AS.
The superiority of ACS over AS is due to the fact that
in ACS the recently calculated slope has more weight
than the other slopes in the slope history while all of
the slopes have equal weights in AS.

Our experimental results showed that a small
modification to FTSP gained us a remarkable
synchronization improvement on a line of 20 sensor
nodes. Maintaining an extra slope history and applying
ACS in order to provide synchronized notion of time
to the applications led to increased synchronization
quality without changing the propagation speed of
the flood. The slope value calculated by ACS is
affected by the previously calculated slope values in
the slope table and hence data from a larger period
are considered. Although this strategy improves the
performance of FTSP, it can be observed from Figure
6 that as the distance from the reference node gets
larger, the collected slope values show quite variability
and the maximum observed skew to the reference
node increases exponentially for all proposed methods.
Hence, the synchronization performance of these
methods are unsatisfactory.
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(a) Original FTSP with Least-Squares

(b) FTSP with MS

(c) FTSP with AS

(d) FTSP with ACS

Figure 5: Global skew (left column), local skew (middle column) and the maximum synchronization error versus distance from the reference
(root) node 1 (right column) on the line topology for FTSP with the proposed methods.

(a) Original FTSP with
Least-Squares

(b) FTSP with MS (c) FTSP with AS (d) FTSP with ACS

Figure 6: Slope values of the estimated regression line from which 1.0 is subtracted for the nodes running FTSP on the line topology with the
proposed methods.
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B.2 Slow-Flooding with Rate Dissemination
Although the slope methods are claimed to improve
the synchronization accuracy, they are unable to
solve the scalability problem of slow-flooding. The
synchronization error of the far-away nodes to the
reference is still an exponential function of the network
diameter since they perform least-squares on the
synchronization points whose errors are amplified at
each hop due to waiting times. By considering this
situation, we realize the following fact.

Fact 4: Least-squares must not be performed on
data which are originated by a far-away node in
slow-flooding based time synchronization.

In this subsection, we propose Rate Flooding Time
Synchronization (RFTS) whose pseudo-code is presented
in Algorithm 3. In RFTS, each node not only floods the
estimated value but also the estimated relative rate of
the reference clock.7 Moreover, the nodes are restricted to
perform least-squares in order to calculate the estimated
relative hardware clock rates of their neighbors. Hence,
least-squares is performed on data which are originated
by a node which is the neighbor of the current node (one
hop away).

In order to estimate the clock of the reference node,
each node v ∈ V maintains variables related to its logical
clock whose value at any time t is calculated as follows:

Lv(t) = basev(t)

+ (Hv(t)− lastUpdatev(t))hrv(t). (28)

The variable basev is required to store the reference clock
estimate carried by the most recent synchronization
message received and lastUpdatev holds the hardware
clock reading at the time at which basev variable is
updated. The variable hrv holds the estimated relative
rate of the reference clock. This variable can also be
considered as the rate multiplier of the logical clock of v. It
can be noticed from the equation 28 that Lv is calculated
by adding up the amount of progress since the latest
update of the base value.

Node v also maintains a repository in order to keep
track of the relative hardware clock rates of its neighbors.
When v is powered on, the neighbor repository is cleared
and the estimated relative hardware clock rates kept for
each neighbor are initialized to 1 (Line 2). seqv variable
which stores the largest sequence number received from
the reference node, basev and lastUpdatev variables are
initialized to zero (Line 3). The estimated relative rate of
the reference clock hrv is set to one (Line 4). Moreover, a
periodic timer is started which will fire every time the
hardware clock progresses B units (Line 5).

Each time a synchronization message is received from
any neighboring node u ∈ Nv , the (Hv, Hu) pair and
the estimated relative hardware clock rate huv is stored

7. The relative rate of the reference clock from node v’s perspective is
defined as the rate of the reference clock with respect to the hardware
clock rate of node v.

Algorithm 3 RFTS pseudo-code for node v with a fixed
reference node whose node identifier is ROOT.
1: Initialization
2: clear repository and ∀u ∈ Nv set huv ← 1
3: basev ← 0; lastUpdatev ← 0; seqv ← 0
4: hrv ← 1
5: start periodic timer with period B
6:
7: � Upon receiving < Lu, Hu, h

r
u, sequ >

8: store (Hv, Hu) and estimate huv using least-squares
9: if seqv < sequ
10: basev ← Lu
11: lastUpdatev ← Hv

12: seqv ← sequ
13: hrv ← hru.h

u
v

14: endif
15
16:� Upon timer timeout
17: if u = ROOT then sequ ← sequ + 1 endif
18: broadcast < Lv, Hv, h

r
v, seqv >

in the slot assigned for that neighbor in the repository
(Lines 7-8). It should be noted that the slope of the
least-squares line which is calculated by using (Hv, Hu)
pairs, is an estimate for the relative hardware clock
rate hu/hv . If the received synchronization message
carries a higher sequence number (Line 9), this situation
indicates that the reference node has recently flooded its
current logical clock value into the network. Hence, v
sets the base value of its logical clock to the received
logical clock value (Line 10). The hardware clock of
v is stored at lastUpdatev (Line 11) and the sequence
number is updated (Line 12). Since v keeps the estimated
relative hardware clock rate of u, it can calculate hrv by
multiplying huv with the received hru value (Line 13).

When a timeout event is generated (Line 16), only
the reference node increments its sequence number and
initiates a new flooding round (Line 17). Each node
broadcasts a message which carries the value of its
logical clock, hardware clock, estimated relative rate of
the reference clock and sequence number (Line 18).

B.2.1 Analysis
In RFTS, each node receives messages which carry
estimated relative rate of the reference node with respect
to the hardware clock rate of the neighboring node from
which the message is received. Let v0, v1 and v2 form a
line topology. Node v1 calculates the estimated rate of
the reference node v0 by using independent hardware
clock readings from v0. When v1 sends its estimate to
v2, v2 multiplies the received estimate with the estimated
hardware clock rate of v1 which has been also calculated
by using independent hardware clock readings from
v1. Hence, the received estimated rate of the reference
node from v1 is independent from the estimated relative
hardware clock rate of v1 with respect to the hardware
clock of v2. In general, the estimated hardware clock
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rates of the neighboring nodes are also independent from
the received estimated relative rate of the reference node.
By using this strategy, we show that this drift estimation
mechanism also exhibits an exponential error with the
network diameter as follows.

Consider the execution of RFTS on a line of n nodes
vo, v1, ..., vn−1 ∈ V such that v0 is the reference node.
Assume that 1

Sxx
≤ 1
S holds for all times t and for

all nodes vi ∈ V .8During the execution, v1 collects
independent hardware clock readings of v0 which suffer
from an error ε ∼ N (0, σ2). Hence, hv0v1 ∼ N (

hv0

hv1
, κv1 =

σ2

S ) holds due to distribution 27. While v2 collects
hardware clock readings of v1 which suffer from an error
ε ∼ N (0, σ2) in order to estimate hv1

hv2
, it also receives

the estimate hv0v1 from v1. Due to the independency
of the hardware clock readings of v1, it holds that
hv1v2 ∼ N (

hv1

hv2
, σ

2

S ). Since v1 calculates hv0v1 by considering
independent hardware clock values from v0 and v2

calculates hv1v2 by considering independent hardware
clock values from v1, hv0v1 and hv1v2 are independent.
Hence, we get that:

V ar(hv0v2) = V ar(hv0v1 .h
v1
v2)

= (E[hv0v1 ])2V ar(hv1v2) + (E[hv1v2 ])2V ar(hv0v1)

+V ar(hv0v1)V ar(hv1v2)

= (
hv0
hv1

)2σ
2

S
+ ((

hv1
hv2

)2 +
σ2

S
)κv1

= κv2 . (29)

E[hv0v2 ] = E[hv0v1 ]E[hv1v2 ] =
hv0
hv2

. (30)

Thus, we have that:

hv0v2 ∼ N (
hv0
hv2

, κv2) (31)

At each step, hv0vk and hvkvk+1
for 1 ≤ k ≤ n − 2

are independent from each other and by the same
construction, the error distribution of hv0vn−1

can be
formulated as follows:

hv0vn−1
∼ N (

hv0
hvn−1

, κvn−1)). (32)

Since for all vi, vj ∈ V it holds that hvi/hvj ≈ 1,9 it
follows that κvi ≈ (σ

2

S + 1)i − 1. Thus, we reach the
following theorem.

Theorem B.1: In RFTS, the variance of the relative
drift estimation of node vi ∈ V is upper bounded by
O
(

(σ
2

S + 1)i − 1
)

.

8. Since it can be assumed that number of successive message losses
in sensor networks can be upper bounded, 1/Sxx can also be upper
bounded due to periodic synchronization and message exchange.

9. Due to the fact that the hardware clocks exhibit a drift between
30 and 100 ppm.

Table 5: Summary of the experimental measurements with RFTS.

Max. Global Skew 68 µsec

Avg. Global Skew 55 µsec

Max. Local Skew 67 µsec

Avg. Local Skew 12 µsec

Fact 5: The effect of waiting times at each node on
the synchronization accuracy due to slow-flooding is
considerably smaller in RFTS when compared to FTSP.

B.2.2 Experimental Results For RFTS
The global and local skew values, the rate multipliers
and also the maximum clock skew observed between
the nodes 2 to 20 and the reference node 1 observed
during the experiments on the line topology with
RFTS are presented in Figure 7. The summary of the
experimental measurements is given in Table 5. It can
be concluded that the proposed method outperforms
FTSP quite significantly although it does not change the
propagation speed of the flood, employs an identical
message pattern and has the same message complexity. If
maximum global skew is considered, RFTS improved the
performance of FTSP approximately by a factor of 8. As
can be observed, the negative effect of the least-squares
regression on the scalability is reduced considerably with
rate dissemination in RFTS. Since the rate multipliers
are quite stable for RFTS, the estimation errors of the
far-away nodes are small when compared to FTSP.

For RFTS, the initial network wide synchronization
was achieved at approximately 400th second, which took
shorter than FTSP. The global skew of this protocol
was 70 µsec at that time, respectively. Since the actual
performance of RFTS can be observed as soon as the
estimated clock value and clock rate of the reference
node have been collected by all of the nodes, fast
synchronization is the superiority of RFTS.

APPENDIX C
ANALYSIS OF FCSA
We first introduce the following theorem which states
that if communication delay is neglected, all of the sensor
nodes agree on a common logical clock speed using the
clock speed agreement mechanism.

Theorem C.1: If the graph G remains strongly
connected, then ∀v ∈ V : lim

t→∞
(hv(t).lv(t)) = speed.

Proof: The equation 4 can be rewritten as x(t+) =
M.x(t) such that x(t) is an nx1 matrix whose ith entry
contains the logical clock speed hi(t).li(t) of the node
i ∈ V at time t and M is a nxn row-stochastic matrix
corresponding to the graph G whose aij entry is defined
as 1/|Ni|+ 1 if {i, j} ∈ E and otherwise zero. The proof
is based on the fact that the products of row-stochastic
matrices converges if G is strongly connected. The
detailed proof can be found in [10], [9]. This result
also implies that limiting the number of neighbors of a
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Global Skew Local Skew

Rate Multipliers Skew To Root

Figure 7: Global skew, local skew, collected rate multipliers from which 1.0 is subtracted and maximum clock skew observed between the nodes
2 to 20 and the reference node 1 measured for nodes running RFTS.

sensor node does not prevent agreement as long as the
communication graph remains strongly connected.
However, since neglecting the uncertainties on the
message path is not realistic in WSNs, one must take into
account effect of these uncertainties on the agreement.
Let the adjacency matrix A and the laplacian matrix L
of the network graph G = (V,E) are defined as follows:

A(i, j) =

{
1, {i, j} ∈ E
0, otherwise

, (33)

L = D −A, (34)

such that D = diag(d1, d2, ..., dn) is the degree matrix of
G, i.e. di = |Ni|. Let 0 = λ1(L) ≤ λ2(L) ≤ ... ≤ λn(L) be
the eigenvalues of L.

Assume that 1
Sxx
≤ 1
S and lvi ≤ ` hold for all times t

and for all nodes vi ∈ V . Hence, huv in the equality 4 can
be written as

huv =
hu
hv

+ duv ∼ N (0,
σ2

S
) (35)

such that duv represents the error of the least-squares
regression due to the non-deterministic delays occurred
during the communication between the nodes u and v.
Hence,

huv .lu =
hu
hv
.lu + duv.lu

=
hu
hv
.lu + νuv (36)

holds such that νuv ∼ (0, σ
2

S `
2). By using this equality,

the equality 4 can be rewritten as follows:

lv(t
+) =

lv(t) +
∑
u∈Nv

huv (t).lu(t)

|Nv|+ 1

= lv(t) +

∑
u∈Nv

(hu

hv
.lu(t)− lv(t))

|Nv|+ 1

+

∑
u∈Nv

νuv(t)

|Nv|+ 1

= lv(t) + c
∑
u∈Nv

(
hu
hv
.lu(t)− lv(t)) + nv(t)(37)

where c = 1/(|Nv|+ 1) and nv(t) = c
∑
u∈Nv

νuv(t). This
equality is the same as the equality 5 in [24]10, hence, the
following theorem holds:

Theorem C.2: If the graph G remains strongly
connected, then the variance of lv for any v ∈ V
is upper bounded by

V ar(lv) ≤ c
σ2

S
`2min{Dnmax {λi} , λmax(A2)

n∑
i=2

λi}

= γ2, (38)

where Dn =
∑n
i=1 di is the total degree in the network

and λi = 1/(2λi(L)− cλ2
i (L)).

Proof: Apply Theorem 2 in [24] with u= 0, ε = c and
σ2 = σ2

S `
2.

This result shows that the error of the clock speed
agreement essentially depends on the total degree of the
network and the eigenvalues of L and A2. Hence, the

10. Consider equality 4 in [24]. Substitute ti(k) with hi
hi
.li(t) = li(t),

t̂j(k) with hji .lj(t) =
hj

hi
.lj(t) + νij and ε with 1/(|Nv | + 1). Hence,

we reach equality 5.
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error of the drift estimation mechanism in FCSA does
not grow exponentially with the diameter of the network
as in FTSP. Let FCSA is executed on the line topology
v0, v1, ..., vn such that v0 is the reference node. Let B
be the expected waiting time at each hop to propagate
the estimated logical clock value of the reference node.
During the execution, v1 receives the estimated logical
clock value of the reference node which is affected by
the error introduced by the message delay. Due to the
expected waiting time B at node v1, the variance of
this estimate is increased by γ2B2. Node v2 receives
this estimate with an additional error introduced by
the message delay. Similarly, after waiting an expected
time of B, the variance of the estimate is increased
by γ2B2. It can be concluded that the variance of the
estimated logical clock at node vn becomes on the order
of O(γ2B2D). Therefore, the standard deviation of the
estimated logical clock of the reference node is upper
bounded by the square root of the network diameter.

APPENDIX D
REACTION TO DYNAMICS

In this section we present simulation results of PulseSync
and FCSA in order to observe their adaptation to
the changing environmental conditions. Since PulseSync
employs fast flooding, it is quite clear that it adapts
changing environmental conditions more quickly than
FCSA. However, the adaptation time of FCSA is not too
long when compared to PulseSync. In order to verify
this argument, we performed simulations for PulseSync
and FCSA on a line topology of 20 sensor nodes. After
the synchronization is established, we suddenly changed
the drift rate of the node whose identifier is 10 in order
to simulate a change on the environmental temperature.
The results of our simulations is presented in Figure 8.

As can be observed, at t=50000 of the simulation,
the hardware clock rate of node 10 was changed. After
that time, the drift estimation of PulseSync adopted to
dynamics in approximately 500 seconds. On the other
hand, this adaptation took approximately 1500 seconds
for FCSA. If global and local skews are considered, the
adaptation time of PulseSync was approximately 500
seconds while it took 2000 seconds for FCSA. After the
adaptation, the synchronization accuracies of PulseSync
and FCSA were almost the same.

It can be concluded that the delayed adaptation
in FCSA occurred due to the slow-flooding, but the
adaptation time is not too long when compared to
PulseSync. Hence, FCSA can be preferred on also
dynamic environmental conditions.
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(a) PulseSync

(b) FCSA

Figure 8: Global skew (left column), local skew (middle column) and the slopes/rate multipliers from which 1.0 is subtracted (right column)
for PulseSync and FCSA, respectively.


