

Design and Implementation of an Object Oriented and

Real-Time Microkernel for Embedded Systems

Using Design Patterns

Kasim Sinan YILDIRIM Aylin KANTARCI

Computer Engineering Department, Ege University, 35100, Bornova, İzmir, Turkey
sinan.yildirim@mail.ege.edu.tr

aylin.kantarci@ege.edu.tr

Abstract. Many embedded applications need a real-time and embedded operating system

for an easy operation environment. In contrast to general purpose operating systems, real

time embedded operating systems must be configurable and restructurible in accordance

with application requirements. In this study, the properties and requirements of real-time

embedded systems have been examined from the viewpoint of software engineering

concepts. Within this context, eGe Gomulu Isletim Sistemi (eGIS – eGe Embedded

Operating System), which is a portable, real-time, embedded, object oriented and

configurable operating system, has been designed and implemented. In this paper, the

developed system has been introduced and the design patterns used in the implementation

of the embedded operating system eGIS have been explained and discussed.

1 Introduction

Software development for embedded systems has many different requirements than

that for traditional operating environments. For example, embedded systems offer

limited amount of resources to the applications. In addition, most of the software

developed for embedded systems have real-time restrictions. Therefore, general

purpose operating systems fail in fulfilling the demands of embedded applications.

What is needed is a real-time operating system that can be customized, reconfigured

and even restructured easily in accordance with the requirements of specific

applications and application domains [1].

It is difficult to extend and configure many current real-time embedded operating

systems (REOS). Addition of new functionality makes such operating systems more

complex and harder to maintain. In addition, highly coupled modules and interfaces

make it hard to modify and understand the system. A well defined, loosely coupled,

extensible and flexible architecture is necessary for modern REOS. Reusability of

system components, portability, scalability and reconfigurability are the key concepts

in the design of modern operating systems [2]. In order to fulfill these requirements,

modern software development methods and concepts must also be employed in the

design of modern REOS.

Design patterns are one of the modern software engineering tools that can be used

in the construction of modern REOS. Design patterns refer to descriptions of

communicating objects and classes that are customized to solve a general design

problem in a particular context and they offer powerful and generalized designs that

can be reused on various software systems [3]. Applying design patterns to software

systems increases software quality by improving distributability, reusability,

portability, extensibility and maintainability of the system being developed [4].

Many of the design patterns depend on the concept of interface inheritance rather

than class inheritance. Class inheritance defines an object’s implementation in terms

of another object’s implementation. On the other hand, interface inheritance

describes when an object can be used in the place of another. An object's interface

does not include any implementation details and different implementations of the

same interface by different objects make them interchangeable with each other.

Consequently, clients remain unaware of the specific types of objects they use, as

long as the objects adhere to the interface that clients expect [3].

Another important point to emphasize is that, design patterns favor object

composition over class inheritance. In class inheritance; subclasses reuse the code of

parent classes and they are dependent on the implementations of their parent classes.

Any modification on parent classes affects subclasses. In contrast, object composition

is a black box reuse. The added functionality is gained by composing another object.

The compositor is unaware of any implementation details of the composed object; it

only knows their interface. Internal changes on the composed object have no effect on

the compositor. In addition, an object of the same type can be replaced by another

without any change on the compositor. Furthermore, systems that are designed using

class inheritance generally grow into huge class hierarchies that are unmanageable

and hard to change. On the other hand, object composition results in a clean object

oriented structure [3].

Design patterns can be categorized according to the design problems they solve.

Creational design patterns make a system independent of how its objects are created,

composed and represented [3]. For example, Singleton and Abstract Factory

creational design patterns abstract the instantiation process of concrete classes.

Structural design patterns are concerned with how classes and objects are composed

to form larger structures and they mostly depend on object composition. Bridge and

Facade are the examples of design patterns in this category. Bridge decouples

abstraction from its implementation. Facade defines a higher-level interface.

Behavioral design patterns are concerned with algorithms and assignment of

responsibilities among objects. For example, Strategy behavioral design pattern

abstracts algorithms and makes them interchangeable [3].

Using design patterns in the design of REOS makes it easier to structure the

operating system in accordance with the application needs. For example, applying

design patterns to the operating system design results in that, a subsystem that fulfills

application requirements best can be substituted with the existing one easily.

Similarly; portability, a key concept in embedded operating systems, can be provided

by using structural design patterns. Additionally, resource management can be

performed in a flexible manner by switching between various algorithms that have

been implemented with using behavioral design patterns [5].

Many embedded operating systems that have been designed by using modular

languages such as C are hard to extend. For example, Ucos-II [6] has a monolithic

structure and has not been designed by using modern software approaches. Ucos-II

implements priority based preemptive scheduling. In order to change this scheduling

algorithm, many parts of the operating system must be recoded. Therefore, structuring

Ucos-II according to application requirements is difficult [5].

Many object oriented embedded operating systems are based on class inheritance

and they include a huge class hierarchy. For example, eCOS [7] embedded operating

system has been implemented using C++ object oriented language and can be

configured in accordance with the application requirements. However, eCOS does not

have a well defined class hierarchy and its architecture is not based on design

patterns. CHORUS [8] and PURE [9] depend on a huge class hierarchy which makes

their architectures hard to maintain, modify and extend. On the other hand, EPOS [10]

has a configurable structure in which implementations and interfaces have been

separated; but its architecture, like eCOS, is not based on design patterns.

In this study, in order to eliminate the weaknesses of existing REOS, a real time,

object oriented and embedded operating system eGe Gomulu Isletim Sistemi, eGIS,

has been designed and implemented. eGIS is a configurable, customizable and

portable operating system owing to its architecture based on modern software

engineering concepts, especially design patterns. This paper is organized as follows:

The architecture of the developed system is introduced in Section 2. Most important

design patterns used in eGIS system are discussed in Section 3. Implementation and

experimental results are presented in Section 4. Finally, Section 5 is the conclusion.

2 eGIS System Architecture

The most important feature of eGIS is that it has an extensible, customizable and

portable object-oriented architecture and that it has been designed to operate on

embedded systems with real-time restrictions. eGIS has a microkernel architecture

[11] which is based on design patterns and is portable in the sense that it operates on

different hardware and software platforms. eGIS is composed of three subsystems that

fulfill process management, concurrency management and interrupt management

services, respectively.

The layered architecture of eGIS is shown in Fig. 1. eGIS includes a C++

System Interface, Subsystems, Infrastructure and Platform layers. The main interfaces

zand abstractions are defined in the Infrastructure layer and implemented in the

Subsystems layer. For example, the main process abstraction and related interfaces

have been defined in the

Infrastructure layer; whereas their

implementations according to the

application requirements have

been implemented in the

Subsystems layer . The Platform

layer implements the platform

specific interfaces and abstractions

and provides platform

independency. None of the

implementations in the

Subsystems and abstractions in

Infrastructure layer are dependent

on any specific platform. Finally, Fig. 1. The layered architecture of eGIS

the C++ System Interface provides a C++ API for embedded applications. The

developed system interface enables the embedded applications to be isolated from the

below layers. Hence, modification of the embedded application is avoided in case of

any change in the underlying layers of eGIS.

The internal structure of eGIS microkernel and its interaction with external system

components are shown in Fig. 2. Interrupt, process and concurrency management

abstractions have been implemented in Ani, Zigana and Efes subsystems,

respectively. Zigana is the process management subsystem and implements priority

based preemptive process scheduling algorithm. Zigana provides services for

creating, starting, stopping, blocking, unblocking and terminating processes. Ani is

the interrupt

management subsystem

and it implements a

simple and efficient

interrupt management

algorithm. Ani provides

services for registering /

unregistering interrupt

service managers and

basic interrupt handling

mechanisms. Efes is the

subsystem that manages

concurrency objects by

providing services for

creation of mutex and semaphores, locking and unlocking mutexes, signaling and

acquiring semaphores.

As seen in Fig. 2, the subsystems are completely isolated from each other and the

underlying hardware platform. Consequently, in the development phase, these

subsystems have all been tested independently on a PC platform. Using a microkernel

architecture that is based on interface inheritance and object composition improves

the extensibility and scalability of eGIS. Addition of a new feature to the operating

system is no more than registering a new subsystem to the microkernel. New

subsystems, that share the same interface with different implementations, can be

registered to the microkernel easily and can be interchanged with existing subsystems.

For example, Zigana process management subsystem, which implements a priority

based preemptive scheduling algorithm, can be replaced by a different subsystem that

implements a simple round-robin based process management policy. Furthermore; in

eGIS system, interfaces and their implementations have been separated and a clean

object oriented architecture has been obtained.

As shown in Fig.2, eGIS communicates with Embedded Applications, Drivers and

a Memory Management Subsystem. Embedded Applications are unaware of any

internal details about the system structure, subsystems and even underlying hardware.

They only need to know the programming API that resides in the system interfaces

layer. Drivers have not been implemented in the context of eGIS, they have been

implemented independently and they use the services provided by eGIS microkernel.

The Memory Management Subsystem, Kizilirmak, has been implemented

independently outside of the microkernel. Kizilirmak implements sequential fit

Fig. 2. The internal structure of eGIS Microkernel and its

interaction with external components

memory management algorithm. A memory manager subsystem that is more efficient

and suitable for real-time systems may be replaced with Kizilirmak.

As a result of the layered microkernel architecture of eGIS; portability,

extensibility, maintainability and testability of the general system are highly

improved. This results in a real application-oriented operating system [12]. It should

be noted that the main structure of eGIS is based on the design patterns. Design

patterns have been applied to the points that may be changed in accordance with the

application requirements. The design of eGIS favors object composition and interface

inheritance over class inheritance which results in a clean and reusable object-

oriented architecture. The following section explains how design patterns have been

used in eGIS and discusses the gained advantages.

3 Integration of Design Patterns to eGIS Operating System

Design patterns used in the eGIS operating system deal with the internal structures

of the subsystems and they can be classified into three groups: creational, structural

and behavioral design patterns.

Singleton [3] and Abstract Factory [3] creational design patterns abstract object

creation and make eGIS independent of the underlying representations and

implementations of the objects. Creation of objects using their concrete class names

implicitly decreases system configurability. To prevent this situation, creational

dependencies on concrete classes must be minimized in the system.

Singleton design pattern guarantees that the classes that need to have a single

instance, have only one unique instance within the system and the creation of this

single instance is isolated from the clients . An example class which is based on the

Singleton design pattern is the eGIS_Microkernel class. Subsystems register the

eGIS_Microkernel object in a centralized way. Consequently, this single microkernel

instance must be accessed in a controlled and well-defined way and clients must be

decoupled from the creation of this object.

Abstract Factory

creational design pattern is

used to create objects in

eGIS system without

declaring their concrete

classes, making them

independent from the

concrete types. An example

usage of this pattern in

eGIS system is shown in Fig. 3. Platform specific process context data and necessary

process context switching codes are implemented in classes that extends

plt_eGIS_ProcessContext interface. Classes that implement eGIS_Process interface

are only aware of plt_eGIS_ProcessContext interface. Underlying hardware platform

dependencies are embedded in platform specific classes. However, platform specific

classes must be created somewhere in the system. If the creation of these classes is

embedded in classes that implement the eGIS_Process interface, there occurs a

Fig. 3. The usage of Abstract Factory in eGIS

dependency on platform specific implementations. To avoid this interobject

dependency, platform specific classes have been created in the context of classes that

implement eGIS_ContextFactory interface. Consequently, eGIS system is completely

independent of the creation of the concrete classes. Client objects within eGIS system

are unaware of the concrete platform objects, they only know their interfaces.

Structural design patterns in eGIS system are used to combine objects and classes

to form larger structures and to compose objects to obtain new functionality. As a

result, it is easy to extend and to port

eGIS to new architectures. In

addition, interobject dependencies

between objects have been

eliminated. The main structural

design patterns in eGIS are Bridge

and Facade [3]. Bridge pattern

abstracts platform specific operations

and separates their implementations.

Fig. 4 shows an example usage of this pattern which is based on its object

composition functionality. Objects that implement the plt_eGIS_ProcessContext

interface include platform specific elements such as registers and switching code

between processes. Process objects that implement eGIS_Process interface compose

objects that implement plt_eGIS_ProcessContext and they are unaware of the

implementation of the platform specific context. The composed object may have a

process context implementation for MIPS architecture as well as Intel i386

architecture. Consequently, the process objects are isolated from their platform

specific context and this improves the portability of eGIS. In order to port eGIS to

another hardware platform, new implementations of the target platform must be

implemented and integrated with the operating system code at compile time. No other

modification is necessary.

eGIS includes many classes and abstract interfaces. The objects instantiated from

these classes have communication and interactions with each other. However, clients

that use the services of eGIS

system must be unaware of

this complex system

structure. The system must

have a general and simple

interface. Facade [3]

structural design pattern

introduces a high level and

simple interface for clients in

eGIS system. Fig. 5 shows

how Facade is used to

provide a general programming interface for embedded applications. As a high level

interface for application programs, eGIS_SystemInterface hides the internal structure

and interactions from clients. Clients that use system API only interact with

eGIS_SystemInterface. Consequently, the clients are independent of the subsystems

and a clean and simple system interface is provided. In addition, clients communicate

with fewer objects.

Fig. 4. The usage of Bridge in eGIS

Fig. 5. The usag of Facade in eGIS system

Behavioral design patterns used in eGIS system prevents dependencies on

algorithms and defines object responsibilities. Strategy [3] is the main behavioral

design pattern used in eGIS operating system. Different system management

algorithms can be adapted to eGIS system easily with the use of Strategy pattern. This

results in a great flexibility which allows for restructuring the operating system in

order to change the management algorithms without affecting the rest of the system.

A suitable implementation of the algorithm interface that fulfills application

requirements best can easily be

linked with operating system

code and can be made ready to

run. Fig. 6 shows the

extensibility gained with the use

of Strategy pattern in eGIS

system. Every process scheduler

in eGIS must implement the

eGIS_ProcessManager

interface. The clients that use the services of the process scheduler are only aware of

the abstract process scheduler interface; they are not coupled to the algorithmic

implementations in process managers. Different process management algorithms can

be integrated to the eGIS system by only replacing the existing classes with their new

implementations without affecting the rest of the system. This results in the

independence of eGIS from the process scheduling algorithm. In addition, separating

implementations and interfaces makes classes that have algorithmic implementations

more reusable.

To summarize, patterns used in eGIS make entire architecture more extensible and

flexible as well as more changeable. As a result, eGIS can easily be structured in

accordance with the application requirements. In addition, eGIS can easily be ported

to different execution platforms easily. The overhead of using design patterns will be

less important on current powerful embedded processors. Also, the improvement in

hardware and memory speeds and decrease in the cost of hardware will make eGIS

much more advantageous than the traditional embedded software systems.

4 Implementation and Experimental Results

eGIS has been implemented in C++ using Gcc C++ compiler [13], Gdb debugger

[14] and Bochs i386 PC emulator [15]. So far we have ported eGIS to i386 platform

and a port to Mips32 architecture is in progress. At the time being, eGIS microkernel

consists of 3 subsystems with more than 60 classes in total. An important point to be

noted is that eGIS needs a small memory of 32K for text and 4K for bss segments.

The main entry point of eGIS is shown in Fig. 7. The subsystems that implement

process management and interrupt management services are registered to the

microkernel and objects that implement platform specific requests are also associated

with the related subsystems. As it is seen, the flexibility of pattern-oriented

microkernel architecture facilitates reconfiguration of the system in accordance with

application specific requirements and restrictions. This configuration is performed

Fig. 6. The usage of Strategy in eGIS

through the selection of

subsystems at system

configuration time

without affecting other

parts of the system.

Porting eGIS to a new

architecture is no more

than registering related

objects that have

platform specific

implementations to the

subsystems.

Fig. 8 shows a

general thread interface

for embedded

applications in eGIS.

Threads in eGIS

system are represented

with eGIS_Process

interface internally. On

the other hand, a more general and clean thread interface e_Thread hides internal

operating system data from applications. Every thread in eGIS must implement

e_Thread interface and override

pure virtual executionMethod

method. With such system

programming interfaces, embedded

applications only know these

services and internal complexity of

eGIS is hidden. Applications are

isolated from any internal

modification on the structure of

eGIS, They do not know which

subsystems have been registered,

even the hardware platform that

they are running on.

The overhead introduced by using design patterns in some basic services of eGIS

has been presented in Table 1. These results have been collected on Bochs emulator.

For example, accessing the single instance of eGIS_Microkernel class takes only 12

clock cycles. Except for the parts of the system that have hard real time restrictions

and in which efficiency is quite important; this pattern can be used safely. Process

scheduling is another system block that Bridge pattern has been used. Deciding which

thread to run next and switching to this thread takes approximately 168 clock cycles.

In the context switching operation, the request is handled through the Bridge layer

and 29 clock cycles has been spent to delegate context switch request to the relevant

platform context objects. If we consider the separation of implementations and

interfaces, achieved portability and clean object structure with the usage of Bridge; 29

Fig. 7. eGIS system entry point

Fig. 8. eGIS application thread interface

clock cycles will be quite reasonable. Facade layer is the entry point of all the

requests of embedded applications. A thread creation request of an application first

passes through the

Facade layer and then

it is delegated to the

related subsystem.

Total thread creation is

performed in

approximately 1146

clock cycles. The

request is prepared in

Facade layer and then

delegated to the process management subsystem in 234 clock cycles. It should be

noted that all the operations in Facade layer are not specific to this design pattern. For

example, some operations such as passing the thread creation parameters to the eGIS

microkernel would have to be performed even if the Facade pattern were not used.

Due to the inefficiencies of Bochs emulator, a fine grain overhead measurement has

not been possible. Therefore, we can say that overhead of Facade is bounded with 234

clock cycles.

The performance results in Table 1 indicate that the overhead introduced with

design patterns is tolerable for many applications. As the current trend in increase in

the speed of embedded microprocessors continues, the overhead will be less

important.

5 Conclusion

In this study, a new real-time and embedded operating system, eGIS, has been

implemented by using design patterns. eGIS is a flexible application oriented

operating system in the sense that it can be used in various systems with independent

and distinct requirements. During the implementation of eGIS, many problems of the

current embedded real-time operating systems have been eliminated by using an

architecture based on design patterns. Employment of design patterns resulted in the

extensibility, interoperability, platform independency and algorithmic independency

of eGIS. The problems solved by the design pattern oriented architecture of eGIS can

be summarized as in the following:

• Creation of objects using concrete class names implicitly has been avoided with

the usage of Singleton and Abstract Factory creational design patterns.

• Bridge structural design pattern provides portability and eliminates inter-object

dependency.

• Facade structural design pattern hides internal structure of eGIS from embedded

applications and provides a clean and a simple programming interface.

• Strategy behavioral design pattern decouples eGIS from management algorithms,

allowing for interchangeability.

As a future work, we plan to add new subsystems such as a Ram file system, a

TCP/IP stack and an embedded graphical user interface engine to eGIS. Secondly, a

Table 1. Experimental results on Bochs emulator for i386 architecture

Pattern

Operation

Total

clock

cycles

Cycles spent in the

pattern layer

Singleton Accessing eGIS_Microkernel

class instance

12 12

Bridge Scheduling next process to

run and switching to it

168 29

Facade Thread creation 1146 < 234

more suitable and efficient memory management subsystem will be replaced with

Kizilirmak and new process and interrupt management algorithms will be

implemented. Thirdly, the design of current subsystems and internal structure of eGIS

will be improved by applying refactoring, which refers to a modern software

engineering technique that eliminates unnecessary inheritance and composition

relationships between classes. Moreover, we will run eGIS in real operating platforms

with real embedded applications.

References

1. Friedrich L. F., Stankovic J., Humprey M., Marley M., Haskins J.: A Survey Of

Configurable, Component-Bassed Operating Systems For Embedded Applications, IEEE

Micro, vol 21, Issue 3, pp. 54-68, (2001)

2. Gien M., Next Generation Operating System Architecture, Proceedings of the International

Workshop on Operating Systems of the 90s and Beyond, (1991)

3. Gamma E., Helm R., Johnson R., Vlissides J.: Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley Professional Computing Series, 395p, (1994)

4. Douglass B. P.: Realt-Time Design Patterns: Robust Scalable Architecture for Real-Time

Systems, Addison-Wesley 332p, (2002).

5. Yildirim K. S.: Design of an Object Oriented and Real-Time Microkernel for Embedded

Systems Using Design Patterns, Master Thesis, Dept. of Computer Engineering, Ege

University, (2005).

6. Labrosse J. J.: MicroC/OS-II: The Real-Time Kernel, 2nd Ed., CMP Books, 604p, (2003).

7. The eCOS operating system homepage. Available: http://ecos.sourceware.org/
8. Rozier M., Abrossimov V., Armand F., Boule I., Gien M. , Guillemot M., Herrrnann F .,

Kaiser C., Langlois S., Leonard P., Neuhauser W.: Chorus Distributed Operating System,

Computing Systems, 1(4):305-370, (1988).

9. Beuche D., Guerrouat A., Papajewski H., Schroder-Preikschat W., Spincysk O., Spincysk

U.: The PURE Family of Object-OrientedOperating Systems for Deeply Embedded

Systems, In Proceedings of 2nd IEEE International Symposium on Object-Oriented Realt-

Time Distributed Computing (ISORC’99), (1999).

10. Fröhlich A. A., Schröder-Preikschat W.: EPOS: An Object-Oriented Operating System, In

Proceedings of the Workshop on Object-Oriented Technology, Lecture Notes In Computer

Science Volume 1743, (1999).

11. Liedtke J.: On micro-kernel construction, In Proceedings of the Fifteenth ACM Symposium

on Operating Systems Principles, (1995).

12. Frohlich A. A.: Application-Oriented Operating Systems, Number 17 in GMD Research

Series, GMD - Forschungszentrum Informationstechnik, Sankt Augustin, (2001).

13. The GNU Compiler Collection homepage. Available: http://gcc.gnu.org/

14. The GNU Project Debugger homepage. Available: http://www.gnu.org/software/gdb/

15. Bochs IA32 PC Emulator homepage. Available: http://bochs.sourceforge.net/

