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Abstract. Many embedded applications need a real-time and embedded operating system 

for an easy operation environment. In contrast to general purpose operating systems, real 

time embedded operating systems must be configurable and restructurible in accordance 

with application requirements. In this study, the properties and requirements of real-time 

embedded systems have been examined from the viewpoint of software engineering 

concepts. Within this context, eGe Gomulu Isletim Sistemi (eGIS – eGe Embedded 

Operating System), which is a portable, real-time, embedded, object oriented and 

configurable operating system, has been designed and implemented. In this paper, the 

developed system has been introduced and the design patterns used in the implementation 

of the embedded operating system eGIS have been explained and discussed.  

1 Introduction 

Software development for embedded systems has many different requirements than 

that for traditional operating environments. For example, embedded systems offer 

limited amount of resources to the applications. In addition, most of the software 

developed for embedded systems have real-time restrictions. Therefore, general 

purpose operating systems fail in fulfilling the demands of embedded applications. 

What is needed is a real-time operating system that can be customized, reconfigured 

and even restructured easily in accordance with the requirements of specific 

applications and application domains [1]. 

It is difficult to extend and configure many current real-time embedded operating 

systems (REOS). Addition of new functionality makes such operating systems more 

complex and harder to maintain. In addition, highly coupled modules and interfaces 

make it hard to modify and understand the system. A well defined, loosely coupled, 

extensible and flexible architecture is necessary for modern REOS. Reusability of 

system components, portability, scalability and reconfigurability are the key concepts 

in the design of modern operating systems [2]. In order to fulfill these requirements, 

modern software development methods and concepts must also be employed in the 

design of modern REOS. 

Design patterns are one of the modern software engineering tools that can be used 

in the construction of modern REOS. Design patterns refer to descriptions of 

communicating objects and classes that are customized to solve a general design 

problem in a particular context and they offer powerful and generalized designs that 

can be reused on various software systems [3]. Applying design patterns to software 



 

systems increases software quality by improving distributability, reusability, 

portability, extensibility and maintainability of the system being developed [4].  

Many of the design patterns depend on the concept of interface inheritance rather 

than class inheritance. Class inheritance defines an object’s implementation in terms 

of another object’s implementation.  On the other hand, interface inheritance 

describes when an object can be used in the place of another. An object's interface 

does not include any implementation details and different implementations of the 

same interface by different objects make them interchangeable with each other. 

Consequently, clients remain unaware of the specific types of objects they use, as 

long as the objects adhere to the interface that clients expect [3]. 

Another important point to emphasize is that, design patterns favor object 

composition over class inheritance. In class inheritance; subclasses reuse the code of 

parent classes and they are dependent on the implementations of their parent classes. 

Any modification on parent classes affects subclasses. In contrast, object composition 

is a black box reuse. The added functionality is gained by composing another object. 

The compositor is unaware of any implementation details of the composed object; it 

only knows their interface. Internal changes on the composed object have no effect on 

the compositor. In addition, an object of the same type can be replaced by another 

without any change on the compositor. Furthermore, systems that are designed using 

class inheritance generally grow into huge class hierarchies that are unmanageable 

and hard to change. On the other hand, object composition results in a clean object 

oriented structure [3]. 

Design patterns can be categorized according to the design problems they solve. 

Creational design patterns make a system independent of how its objects are created, 

composed and represented [3]. For example, Singleton and Abstract Factory 

creational design patterns abstract the instantiation process of concrete classes. 

Structural design patterns are concerned with how classes and objects are composed 

to form larger structures and they mostly depend on object composition. Bridge and 

Facade are the examples of design patterns in this category. Bridge decouples 

abstraction from its implementation. Facade defines a higher-level interface. 

Behavioral design patterns are concerned with algorithms and assignment of 

responsibilities among objects. For example, Strategy behavioral design pattern 

abstracts algorithms and makes them interchangeable [3]. 

Using design patterns in the design of REOS makes it easier to structure the 

operating system in accordance with the application needs. For example, applying 

design patterns to the operating system design results in that, a subsystem that fulfills 

application requirements best can be substituted with the existing one easily. 

Similarly; portability, a key concept in embedded operating systems, can be provided 

by using structural design patterns. Additionally, resource management can be 

performed in a flexible manner by switching between various algorithms that have 

been implemented with using behavioral design patterns [5]. 

Many embedded operating systems that have been designed by using modular 

languages such as C are hard to extend. For example, Ucos-II [6] has a monolithic 

structure and has not been designed by using modern software approaches. Ucos-II 

implements priority based preemptive scheduling. In order to change this scheduling 

algorithm, many parts of the operating system must be recoded. Therefore, structuring 

Ucos-II according to  application requirements is difficult [5].  



 

Many object oriented embedded operating systems are based on class inheritance 

and they include a huge class hierarchy. For example, eCOS [7] embedded operating 

system has been implemented using C++ object oriented language and can be 

configured in accordance with the application requirements. However, eCOS does not 

have a well defined class hierarchy and its architecture is not based on design 

patterns. CHORUS [8] and PURE [9] depend on a huge class hierarchy which makes 

their architectures hard to maintain, modify and extend. On the other hand, EPOS [10] 

has a configurable structure in which implementations and interfaces have been 

separated; but its architecture, like eCOS, is not based on design patterns. 

In this study, in order to eliminate the weaknesses of existing REOS, a real time, 

object oriented and embedded operating system eGe Gomulu Isletim Sistemi, eGIS, 

has been designed and implemented. eGIS is a configurable, customizable and 

portable operating system owing to its architecture based on modern software 

engineering concepts, especially design patterns. This paper is organized as follows: 

The architecture of the developed system is introduced in Section 2. Most important 

design patterns used in eGIS system are discussed in Section 3. Implementation and 

experimental results are presented in Section 4. Finally, Section 5 is the conclusion. 

2  eGIS System Architecture 

The most important feature of eGIS is that it has an extensible, customizable and 

portable object-oriented architecture and that it has been designed to operate on 

embedded systems with real-time restrictions. eGIS has a microkernel architecture 

[11] which is based on design patterns and is portable in the sense that it operates on 

different hardware and software platforms. eGIS is composed of three subsystems that 

fulfill process management, concurrency management and  interrupt management 

services, respectively. 

The layered architecture of eGIS is shown in Fig. 1. eGIS     includes   a      C++ 

System Interface, Subsystems, Infrastructure and Platform layers. The main interfaces 

zand abstractions are defined in the Infrastructure layer and implemented in the 

Subsystems layer. For example, the main process abstraction and related interfaces 

have been defined in the 

Infrastructure layer; whereas their 

implementations according to the 

application requirements have 

been implemented in the 

Subsystems layer . The Platform 

layer implements the platform 

specific interfaces and abstractions 

and provides platform 

independency. None of the 

implementations in the 

Subsystems and abstractions in 

Infrastructure layer are dependent 

on any specific platform. Finally, Fig. 1. The layered architecture of eGIS 
 



 

the C++ System Interface provides a C++ API for embedded applications. The 

developed system interface enables the embedded applications to be isolated from the 

below layers. Hence, modification of the embedded application is avoided in case of 

any change in the underlying layers of eGIS.  

The internal structure of eGIS microkernel and its interaction with external system 

components are shown in Fig. 2. Interrupt, process and concurrency management 

abstractions have been implemented in Ani, Zigana and Efes subsystems, 

respectively. Zigana is the process management subsystem and implements priority 

based preemptive process scheduling algorithm. Zigana provides services for 

creating, starting, stopping, blocking, unblocking and terminating processes. Ani is 

the interrupt 

management subsystem 

and it implements a 

simple and efficient 

interrupt management 

algorithm. Ani provides 

services for registering / 

unregistering interrupt 

service managers and  

basic interrupt handling 

mechanisms. Efes is the 

subsystem that manages 

concurrency objects by 

providing services for 

creation of mutex and semaphores, locking and unlocking mutexes, signaling and 

acquiring semaphores.  

As seen in Fig. 2, the subsystems are completely isolated from each other and the 

underlying hardware platform. Consequently, in the development phase, these 

subsystems have all been tested independently on a PC platform. Using a microkernel 

architecture that is based on interface inheritance and object composition improves 

the extensibility and scalability of eGIS. Addition of a new feature to the operating 

system is no more than registering a new subsystem to the microkernel.  New 

subsystems, that share the same interface with different implementations, can be 

registered to the microkernel easily and can be interchanged with existing subsystems. 

For example, Zigana process management subsystem, which implements a priority 

based preemptive scheduling algorithm, can be replaced by a different subsystem that 

implements a simple round-robin based process management policy. Furthermore; in 

eGIS system, interfaces and their implementations have been separated and a clean 

object oriented architecture has been obtained. 

As shown in Fig.2, eGIS communicates with Embedded Applications, Drivers and 

a Memory Management Subsystem. Embedded Applications are unaware of any 

internal details about the system structure, subsystems and even underlying hardware. 

They only need to know the programming API that resides in the system interfaces 

layer. Drivers have not been implemented in the context of eGIS, they have been 

implemented independently and they use the services provided by eGIS microkernel. 

The Memory Management Subsystem, Kizilirmak, has been implemented 

independently outside of the microkernel. Kizilirmak implements sequential fit 

Fig. 2. The internal structure of eGIS Microkernel and its 

interaction with external components 
 



 

memory management algorithm. A memory manager subsystem that is more efficient 

and suitable for real-time systems may be replaced with Kizilirmak. 

As a result of the layered microkernel architecture of eGIS; portability, 

extensibility, maintainability and testability of the general system are highly 

improved. This results in a real application-oriented operating system [12]. It should 

be noted that the main structure of eGIS is based on the design patterns. Design 

patterns have been applied to the points that may be changed in accordance with the 

application requirements. The design of eGIS favors object composition and interface 

inheritance over class inheritance which results in  a clean and reusable object-

oriented architecture. The following section explains how design patterns have been 

used in eGIS and discusses the gained advantages. 

3 Integration of Design Patterns to eGIS Operating System 

Design patterns used in the eGIS operating system deal with the internal structures 

of the subsystems and they can be classified into three groups: creational, structural 

and behavioral design patterns. 

Singleton [3] and Abstract Factory [3] creational design patterns abstract object 

creation and make eGIS independent of the underlying  representations and 

implementations of the objects. Creation of objects using their concrete class names 

implicitly decreases system configurability. To prevent this situation, creational 

dependencies on concrete classes must be minimized in the system. 

Singleton design pattern guarantees that the classes that need to have a single 

instance, have only one unique instance within the system and the creation of this 

single instance is isolated from the clients . An example class which is based on the 

Singleton design pattern is the eGIS_Microkernel class. Subsystems register the 

eGIS_Microkernel object in a centralized way. Consequently, this single microkernel 

instance must be accessed in a controlled and well-defined way and clients must be 

decoupled from the creation of this object. 

Abstract Factory 

creational design pattern is 

used to create objects in 

eGIS system without 

declaring their concrete 

classes, making them 

independent from the 

concrete types. An example 

usage of this pattern in 

eGIS system is shown in Fig. 3. Platform specific process context data and necessary 

process context switching codes are implemented in classes that extends 

plt_eGIS_ProcessContext interface. Classes that implement eGIS_Process interface 

are only aware of plt_eGIS_ProcessContext interface. Underlying hardware platform 

dependencies are embedded in platform specific classes. However, platform specific 

classes must be created somewhere in the system. If the creation of these classes is 

embedded in classes that implement the eGIS_Process interface, there occurs a 

Fig. 3. The usage of Abstract Factory in eGIS 

 



 

dependency on platform specific implementations. To avoid this interobject 

dependency, platform specific classes have been created in the context of classes that 

implement eGIS_ContextFactory interface. Consequently, eGIS system is completely 

independent of the creation of the concrete classes. Client objects within eGIS system 

are unaware of the concrete platform objects, they only know their interfaces.  

Structural design patterns in eGIS system are used to combine objects and classes 

to form larger structures and to compose objects to obtain new functionality. As a 

result, it is easy to extend and to port 

eGIS to new architectures. In 

addition, interobject dependencies 

between objects have been 

eliminated. The main structural 

design patterns in eGIS are Bridge 

and Facade [3]. Bridge pattern 

abstracts platform specific operations 

and separates their implementations. 

Fig. 4 shows an example usage of this pattern which is based on its object 

composition functionality. Objects that implement the plt_eGIS_ProcessContext 

interface include platform specific elements such as registers and switching code 

between processes. Process objects that implement eGIS_Process interface compose 

objects that implement plt_eGIS_ProcessContext and they are unaware of the 

implementation of the platform specific context. The composed object may have a 

process context implementation for MIPS architecture as well as Intel i386 

architecture. Consequently, the process objects are isolated from their platform 

specific context and this improves the portability of eGIS. In order to port eGIS to 

another hardware platform, new implementations of the target platform must be 

implemented and integrated with the operating system code at compile time. No other 

modification is necessary.  

eGIS includes many classes and abstract interfaces. The objects instantiated from 

these classes have communication and interactions with each other. However, clients 

that use the services of eGIS 

system must be unaware of 

this complex system 

structure. The system must 

have a general and simple 

interface. Facade [3] 

structural design pattern 

introduces a high level and 

simple interface for clients in 

eGIS system. Fig. 5 shows 

how Facade is used to 

provide a general programming interface for embedded applications.   As a high level 

interface for application programs, eGIS_SystemInterface hides the internal structure 

and interactions from clients. Clients that use system API only interact with 

eGIS_SystemInterface.  Consequently, the clients are independent of the subsystems 

and a clean and simple system interface is provided. In addition, clients communicate 

with fewer objects. 

Fig. 4. The usage of Bridge in eGIS 
 

 

Fig. 5. The usag of Facade in eGIS system 

 



 

Behavioral design patterns used in eGIS system prevents dependencies on 

algorithms and defines object responsibilities. Strategy [3] is the main behavioral 

design pattern used in eGIS operating system. Different system management 

algorithms can be adapted to eGIS system easily with the use of Strategy pattern. This 

results in a great flexibility which allows for restructuring the operating system in 

order to change the management algorithms without affecting the rest of the system. 

A suitable implementation of the algorithm interface that fulfills application 

requirements best can easily be 

linked with operating system 

code and can be made ready to 

run. Fig. 6   shows the 

extensibility gained with the use 

of Strategy pattern in eGIS 

system. Every process scheduler 

in eGIS must implement the 

eGIS_ProcessManager  

interface. The clients that use the services of the process scheduler are only aware of 

the abstract process scheduler interface; they are not coupled to the algorithmic 

implementations in process managers. Different process management algorithms can 

be integrated to the eGIS system by only replacing the existing classes with their new 

implementations without affecting the rest of the system. This results in the 

independence of eGIS from the process scheduling algorithm. In addition, separating 

implementations and interfaces makes classes that have algorithmic implementations 

more reusable. 

To summarize, patterns used in eGIS make entire architecture more extensible and 

flexible as well as more changeable. As a result, eGIS can easily be structured in 

accordance with the application requirements. In addition, eGIS can easily be ported 

to different execution platforms easily. The overhead of using design patterns will be 

less important on current powerful embedded processors. Also, the improvement in 

hardware and memory speeds and decrease in the cost of hardware will make eGIS 

much more advantageous than the traditional embedded software systems. 

4 Implementation and Experimental Results 

eGIS has been implemented in C++ using Gcc C++ compiler [13], Gdb debugger 

[14] and Bochs i386 PC emulator [15]. So far we have ported eGIS to i386 platform 

and a port to Mips32 architecture is in progress. At the time being, eGIS microkernel 

consists of 3 subsystems with more than 60 classes in total. An important point to be 

noted is that eGIS needs a small memory of 32K for text and 4K for bss segments.  

The main entry point of eGIS is shown in Fig. 7. The subsystems that implement 

process management and interrupt management services are registered to the 

microkernel and objects that implement platform specific requests are also associated 

with the related subsystems. As it is seen, the flexibility of pattern-oriented 

microkernel architecture facilitates reconfiguration of the system in accordance with 

application specific requirements and restrictions. This configuration is performed 

Fig. 6. The usage of Strategy in eGIS  

 



 

through the selection of 

subsystems at system 

configuration time 

without affecting other 

parts of the system. 

Porting eGIS to a new 

architecture is no more 

than registering related 

objects that have 

platform specific 

implementations to the 

subsystems.  

Fig. 8 shows a 

general thread interface 

for embedded 

applications in eGIS. 

Threads in eGIS 

system are represented 

with eGIS_Process 

interface internally. On 

the other hand, a more general and clean thread interface e_Thread hides internal 

operating system data from applications. Every thread in eGIS  must implement 

e_Thread interface and override 

pure virtual executionMethod 

method. With such system 

programming interfaces, embedded 

applications only know these 

services and internal complexity of 

eGIS is hidden. Applications are 

isolated from any internal 

modification on the structure of 

eGIS, They do not know which 

subsystems have been registered, 

even the hardware platform that 

they are running on.  

 

The overhead introduced by using design patterns in some basic services of eGIS 

has been presented in Table 1. These results have been collected on Bochs emulator. 

For example, accessing the single instance of eGIS_Microkernel class takes only 12 

clock cycles. Except for the parts of the system that have hard real time restrictions 

and in which efficiency is quite important; this pattern can be used safely. Process 

scheduling is another system block that Bridge pattern has been used. Deciding which 

thread to run next and switching to this thread takes approximately 168 clock cycles. 

In the context switching operation, the request is handled through the Bridge layer 

and 29 clock cycles has been spent to delegate context switch request to the relevant 

platform context objects. If we consider the separation of implementations and 

interfaces, achieved portability and clean object structure with the usage of Bridge; 29 

Fig. 7. eGIS system entry point 

 

 
 

Fig. 8. eGIS application thread interface  

 



 

clock cycles will be quite reasonable. Facade layer is the entry point of all the 

requests of embedded applications. A thread creation request of an application first 

passes through the 

Facade layer and then 

it is delegated to the 

related subsystem. 

Total thread creation is 

performed in 

approximately 1146 

clock cycles. The 

request is prepared in 

Facade layer and then 

delegated to the process management subsystem in 234 clock cycles. It should be 

noted that all the operations in Facade layer are not specific to this design pattern. For 

example, some operations such as passing the thread creation parameters to the eGIS 

microkernel would have to be performed even if the Facade pattern were not used. 

Due to the inefficiencies of Bochs emulator, a fine grain overhead measurement has 

not been possible. Therefore, we can say that overhead of Facade is bounded with 234 

clock cycles.  

The performance results in Table 1 indicate that the overhead introduced with 

design patterns is tolerable for many applications. As the current trend in increase in 

the speed of embedded microprocessors continues, the overhead will be less 

important. 

5 Conclusion 

In this study, a new real-time and embedded operating system, eGIS, has been 

implemented by using design patterns. eGIS is a flexible application oriented 

operating system in the sense that it can be used  in  various systems with independent 

and distinct requirements. During the implementation of eGIS, many problems of the 

current embedded real-time operating systems have been eliminated by using an 

architecture based on design patterns. Employment of design patterns resulted in the 

extensibility, interoperability, platform independency and algorithmic independency 

of eGIS. The problems solved by the design pattern oriented architecture of eGIS can 

be summarized as in the following: 

• Creation of objects using concrete class names implicitly has been avoided with 

the usage of Singleton and Abstract Factory creational design patterns. 

• Bridge structural design pattern provides portability and eliminates inter-object 

dependency. 

• Facade structural design pattern hides internal structure of eGIS from embedded 

applications and provides a clean and a simple programming interface. 

• Strategy behavioral design pattern decouples eGIS from management algorithms, 

allowing for interchangeability. 

As a future work, we plan to add new subsystems such as a Ram file system, a 

TCP/IP stack and an embedded graphical user interface engine to eGIS. Secondly, a 

Table 1. Experimental results on Bochs emulator for i386 architecture 

 
 

Pattern 

 

Operation 

Total 

clock 

cycles 

 

Cycles spent in the 

pattern layer  

Singleton Accessing eGIS_Microkernel 

class instance 

12 12 

Bridge Scheduling next process  to 

run and switching to it 

168 29 

Facade Thread creation 1146 < 234 

 



 

more suitable and efficient memory management subsystem will be replaced with 

Kizilirmak and new process and interrupt management algorithms will be 

implemented. Thirdly, the design of current subsystems and internal structure of eGIS 

will be improved by applying refactoring, which refers to a modern software 

engineering technique that eliminates unnecessary inheritance and composition 

relationships between classes. Moreover, we will run eGIS in real operating platforms 

with real embedded applications. 
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