Adaptive Synchronization of Robotic Sensor Networks

Kasim Sinan YILDIRIM*
*Department of Computer Engineering
Ege University, Universite cad. 35100 Bornova,
[zmir, Turkey
sinan.yildirim@ege.edu.tr

1. INTRODUCTION

Time synchronization is one of the fundamental build-
ing blocks for coordinated and power-efficient operation
of the networked robots. Ironically, time synchroniza-
tion itself is also an energy consuming process which de-

mands communication and information processing among

the robots. This has led most research in time synchro-
nization literature to focus on developing the less power
consuming synchronization method while meeting pre-
defined accuracy requirements.

Roughly, in the existing synchronization methods, par-
ticipants collect noisy time information propagating th-
rough the network and construct a clock in software,
so-called logical clock, whose input is the value read
from the unstable built-in clock and whose output is
the network-wide global time. In general, the logical
clock can be constructed via collecting stable time infor-
mation flooded by a special reference node or via peer-
to-peer communication where nodes interact with and
synchronize to their direct neighbors. Least-squares [4}
3, 9 |7] and consensus based on distributed averaging
[5L 6, [10] are the common methods employed for this
construction. Recently, we proposed a novel technique
for the construction of the logical clock: we considered
the problem of synchronization as a search process in
which each sensor node is trying to adjust the speed
of its logical clock without knowing its correct value.
We employed the Adaptive Value Trackers (AVTs) [2]
which find and track dynamic searched values in a given
search space through successive feedbacks. We pro-
posed a flooding based implementation [8] and a peer-
to-peer implementation [1] of this approach. We ob-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Onder GURCAN}+*

TCEA, LIST, Laboratory of Model driven
engineering for embedded systems
Point Courrier 174, Gif-sur-Yvette, F-91191
France
onder.gurcan@cea.fr

served that the synchronization performances of these
approaches are similar to the existing solutions in the
literature with drastically lower computation overhead,
which make them more power-efficient.

However, an aspect that has been often overlooked
in the recent time synchronization studies is the high
dynamics of the network topology due to the mobil-
ity of the nodes. Aforementioned studies assume pe-
riodical and almost reliable communication among the
nodes. Their performances are evaluated on static and
non-mobile topologies. On the other hand, the time in-
formation propagating in a mobile network is subject to
more noise, collisions and packet losses. Due to mobility
and neighborhood changes, nodes may instantaneously
start to receive time information from badly synchro-
nized nodes. Besides, nodes may be clustered and may
form dense areas where packet collisions and losses occur
frequently. What is more, there may be time durations
during which nodes become disconnected from the net-
work and do not receive time information. These points
are crucial for the performance of time synchronization
protocols and have not been explored yet. It is still un-
known whether the existing solutions are still applicable
under mobile network dynamics or not: Are networked
robots still be able to adapt themselves and self-adjust
their logical clocks while meeting the pre-defined syn-
chronization performance?

In this paper, we reveal by simulations that AVT syn-
chronization is robust and preferable to existing syn-
chronization methods under high mobile dynamics. Com-
pletely blind execution without keeping track of any
neighboring node makes it particularly suitable for robotic
sensor networks. As a remark, we observed that the per-
formance of synchronization via flooding is better than
the peer-to-peer approach in mobile environments.

2. METHOD

We propose a time syncronization method using AVTs.
An AVT finds and tracks a dynamic searched value,
that may change in the time due to the dynamics of the
system, in a given search space as fast as possible [2].

Uncertain Environment

! AVT Owner (Mobile Robot) :
£1 f1oer 4 fl
(1] : I]

o o o | : Jo ;
| [& [a [& '
E Ut Utt1 Ut+3 Upp2
: : OA; 3 '
Lo s | '
Lo v :
i nin) Af+] o ﬂr+2 max

' Adaptive Value Tracker (AVT)

Figure 1: Interaction between a mobile robot
that situated in an uncertain environment and
its AVT. The AVT value tracking process starts
with an initial value vy and includes several cy-
cles of search iteration until v* is reached.

The tracking is established via the successive feedbacks
coming from the owner of the AVT (i.e. the robot) that
indicate the direction that probably lead to the searched
value. This decision is not trivial and is made by taking
into account the goal of the robot.

Formally speaking, an avt searches and tracks a dy-
namic value v* inside a given real interval (search space)
AVTss = [Umin,Umaz] C R where v, is the lower
boundary and v,,q; is the upper boundary for v*. At
any time instant ¢, avt is able to propose a value v; €
AVT,s to its owner robot that can be accessed using
an action of the form v; = avt.value(t). The objective
of the robot is to determine if the searched value v* is
smaller than, equal to or greater than the current pro-
posed value vy, without knowing the value v*. After
this determination, the robot interacts with avt using
an action of the form avt.adjust(f; € F) for sending a
feedback f; from the feedback set F = {1,],~}. The
feedback f; can be about increasing v; (1), decreasing
ve (J) or informing that vy is good (/). A sample search
with AVT is presented in Figure [I] The details for the
AVT parameters can be found in [1],]

In time synchronization with AVTs, each node collects
periodically the time information flooded by a reference
node as in [8] or the time information of its neighboring
nodes in a peer-to-peer manner as in [1]. Whenever a
fresh time information is received, the synchronization
error is calculated by considering the value of the logical
clock. In flooding based approach, the whole error is
added while in the peer-to-peer approach half of the
error is added to the logical clock to compensate for
the clock offset. After offset compensation, each sensor
node tries to find the correct speed of the logical clock

with respect to its built-in clock without knowing the
correct value.

ALGORITHM 1. Speed tracking code for robot u
1: if error>0 then avt,.adjust(f 1)

2: else if error < 0 then avty.adjust(f)

3: else avty.adjust(f =)

A positive error indicates that the logical clock of the
robot is progressing at a slower speed than the sender’s
logical clock. Then, a feedback about increasing the
speed of the logical clock is sent to the avt of that robot
(Algorithm |1} line 1). In contrast, a negative error in-
dicates that the logical clock of the robot is progressing
at a faster speed and hence a feedback about decreasing
its speed is sent to the avt (Algorithm [1} line 2). Oth-
erwise, i.e. the error is zero, avt is informed that the
speed of the logical clock is good (Algorithm [1} line 3),
hence it remains unchanged.

3. SIMULATION RESULTS

In order to evaluate the performance of time synchro-
nization with AVT in mobile environments, we applied
the flooding based and peer-to-peer protocols to the mo-
bile robotic sensors using simulations in our discrete
event simulator. In this simulator, we implemented a
probabilistic radio model (Gaussian wireless channel)
and a CSMA based MAC layer. Briefly, the messages
are corrupted when two or more neighboring robots are
trying to transmit simultaneously and messages are lost
with a small probability. For mobility, we have cho-
sen to implement random waypoint mobility model: a
robot moves on a straight line to a randomly selected
position in the deployment field. Once arrived, it waits
for a random amount of time before it selects a new
position to move to. We implemented 1 MHz built-in
clocks with constant drift clock model where the drift is
uniformly distributed within the interval of 4+ 100 parts
per million. For performance comparison, we considered
two other popular time synchronization protocols: Puls-
eSync [3] and Gradient Time Synchronization Protocol
(GTSP) [6]. PulseSync offers the time information of
the reference node to be propagated as fast and reliably
as possible through pulses. Receiver nodes performs
least-squares regression on the received time informa-
tion to construct their logical clock. On the other hand,
GTSP is a peer-to-peer synchronization protocol and it
performs distributed averaging for time synchronization
by keeping track of the neighboring nodes.

Our evaluation metrics were the instantaneous and
the average instantaneous global synchronization error:
the maximum error observed between arbitrary nodes.
Each of our simulation runs simulated an execution of
25000 seconds. We deployed nodes to a 300x300 meter
square area randomly. The transmission range of the

500

500

400 ﬂ 3 400
_ Flooding-based AVT PulseSync
2
S =00 300
o
g
E 200 200
§ 100 1"] {’1: N 1 100

TN, " | . {
! MM%M‘:&M i rﬂjy fﬁ‘:ﬁA WM A
%0 2300 5000 7500 10,000 12500 15,000 17,500 20,000 22,500 25,000 ®0 2300 5000 7500 10,000 12500 15,000 17,500 20,000 22,500 25,00(
Time (second) Time (second)

25,000 k 25,000
g 20000 | Peer-to-peer AVT 2t GTSP
S |
@ 15,000 1 15,000 | |
w ’ ’ |
= | '(
S '|
E 10,000 1\ 10,000 II
g f ' I ” i,'. |'I i
2 | | | r @ , ,f.
Ui 5,000 "\l"‘-" 5,000 f/ .'

v\{:{‘
(1] o

Q 2500 5,000 7500 10,000 12500 15000 17,500 20,000 22,500 25,000

Time (second)

0 2500 5000 7.500 10000 12500 15000 17.500 20,000 22,500 25.00C
Time (second)

|— Maximum Global Skew — Average Global Skew|

Figure 2: Global synchronization errors observed in our simulations.

nodes were adjusted to 25 meters. The evaluated proto-
cols had an identical beacon period of 30 seconds. Since
the hardware clocks of sensor nodes are reported to have
a drift of £+ 100 parts per million, we defined the upper
bound and lower bounds of the searched logical clock
speed as Upmin = —107% and Ve, = 107* for AVTEl
For GTSP and PulseSync, the least-squares regression
tables are composed of 8 entries. Finally, in GTSP, each
node tracks at most 10 neighbors and if does not receive
message during five beacon periods, it drops the infor-
mation of that neighbor from the neighbor table.

In contrast to the unmobile networks, the time infor-
mation propagated in a mobile network is subject to
more noise, collisions and packet losses. First, while a
robot is receiving a more correct and recent time in-
formation from one of its neighbors, it may not receive
future information from that node due to mobility and
neighborhood change. In this case, it may start to re-
ceive time information from a new neighbor whose logi-
cal clock is badly synchronized. Secondly, robots may be
clustered and form dense areas where packet collisions
and losses occur frequently. Last, there may be time
durations during which a robot becomes disconnected
from the network and may not receive time informa-
tion. We observed that these points are crucial for the
performance of time synchronization protocols.

'Please refer to | @\ for the details of the parameters chosen
for the successf operatlon of AVT.

Figure [2| presents the global synchronization error ob-
served during the simulations of flooding based and peer-
to-peer versions of AVT synchronization, PulseSync and
GTSP. In PulseSync, the time information of the refer-
ence robot is propagated as fast as possible which re-
duces the noise of the received time information and
decreases the time required for network-wide synchro-
nization . Flooding-based time synchronization with
AVT required more time to catch the performance of
PulseSync, however it is more robust to packet losses
and network disconnections. In PulseSync, all of the
network should be connected at pulse times of the ref-
erence robot in order to receive fresh time information.
During the time interval [13000,17000] in our simula-
tions, some robots became either disconnected from the
network or too many packet losses occur in the network,
hence they could not receive pulses from the reference
robot. This has led these robots to loose synchroniza-
tion. In contrast, in AVT synchronization, the network
do not require to be connected at pulse times. Instead,
each robot waits until their broadcast timer to expire
in order to propagate the fresh time information of the
reference robot. Any robot receiving a massage carry-
ing a higher sequence number updates its logical clock
although it might have missed the pulse of the refer-
ence robot. This makes our approach more suitable for
mobile robotic networks.

Considering peer-to-peer approaches, GTSP has cru-

cial disadvantages compared to peer-to-peer time syn-
chronization with AVT. First, GTSP requires robots to
keep track of their neighboring robots in order to em-
ploy distributed averaging. However, it suffers from the
problem of deciding which neighbors to keep track and
which ones to discard in dense areas of the network,
since it is not feasible to store information for all of
the neighbors. Moreover, detection of the neighborhood
change is another crucial problem. For instance, as a
simple strategy, when a robot does not receive messages
during n broadcast periods from the neighbor it is cur-
rently keeping track of, it may delete its information
from its internal tables. However, under high mobility,
this strategy exhibits poor performance. From our simu-
lations, we realized that GTSP is not suitable for mobile
robotic networks and exhibits a poor performance. On
the other hand, peer-to-peer AVT synchronization does
not require to keep track of the information of the neigh-
boring robots and it works in a completely blind man-
ner. Robots update their time information whenever
they receive a message from their neighboring robots
regardless of the identity of the sender. This strategy
achieved better performance than GTSP, but not better
than the flooding-based approaches.

4. DISCUSSION AND CONCLUSION

This paper presented the application and the evalua-
tion of the recent flooding-based and peer-to-peer time
synchronization methods on robotic sensor networks. It
has already been shown that AVT synchronization is
simple, easy to implement, memory and CPU efficient,
and it establishes synchronization in finite amount of
time. [8, [1]. Here in this study, we observed through
simulations that AVT synchronization is also robust and
efficient under mobility. Hence, deducing the time syn-
chronization problem in robotic sensor networks into a
dynamic value searching problem is preferable to exist-
ing synchronization methods in the literature.

In general, the peer-to-peer approaches are expected
to have a better performance in mobile networks. In-
tuitively, when the robots of the connected components
synchronize to themselves, it should become easier to
synchronize different connected components of the net-
work. However, we observed that the flooding-based
AVT synchronization performs better and establishes
network-wide synchronization faster, compared to peer-
to-peer strategy. We think that this mainly due to the
random waypoint mobility model we applied in our sim-
ulation experiments. We believe that if robots apply
another mobility model (where they can form group),
the success of the peer-to-peer synchronization would
improve. However, we leave it as a future work for now.

Besides, as another future work, we plan to explore a
hybrid synchronization mechanism in which the flooding

and the peer-to-peer strategies are employed together,
as in [10].

5. REFERENCES

[1] O. Giircan and K. S. Yildirim. Self-organizing
time synchronization of wireless sensor networks
with adaptive value trackers. In Self-Adaptive and
Self-Organizing Systems (SASO), 2013 IEEE
Sixth Int. Conf. on, pages 91 =100, sept. 2013.

[2] S. Lemouzy, V. Camps, and P. Glize. Principles
and properties of a mas learning algorithm: A
comparison with standard learning algorithms
applied to implicit feedback assessment. In Proc.
of the 2011 IEEE/WIC/ACM Int. Conf. on Web
Intelligence and Intelligent Agent Technology -
Vol. 02, WI-IAT ’11, pages 228-235, Washington,
DC, USA, 2011. IEEE Computer Society.

[3] C. Lenzen, P. Sommer, and R. Wattenhofer.
Optimal clock synchronization in networks. In
Proceedings of the Tth ACM Conference on
Embedded Networked Sensor Systems, SenSys 09,
pages 225238, New York, NY, USA, 2009. ACM.

[4] M. Maréti, B. Kusy, G. Simon, and A. Lédeczi.
The flooding time synchronization protocol. In
Proc. of the 2nd International Conference on
Embedded Networked Sensor Systems, SenSys '04,
pages 3949, New York, NY, USA, 2004. ACM.

[5] L. Schenato and F. Fiorentin. Average timesynch:
A consensus-based protocol for clock
synchronization in wireless sensor networks.
Automatica, 47(9):1878-1886, Sept. 2011.

[6] P. Sommer and R. Wattenhofer. Gradient clock
synchronization in wireless sensor networks. In
Proceedings of the 2009 International Conference
on Information Processing in Sensor Networks,
IPSN 09, pages 37-48, Washington, DC, USA,
2009. IEEE Computer Society.

[7] K. Yildirim and A. Kantarci. Time
synchronization based on slow-flooding in wireless
sensor networks. Parallel and Distributed Systems,
IEEE Transactions on, 25(1):244-253, 2014.

[8] K. S. Yildirim and O. Giircan. Efficient time
synchronization in a wireless sensor network by
adaptive value tracking. Wireless
Communications, IEEE Tran. on, to appear.

[9] K. S. Yildirim and A. Kantarci. Drift estimation
using pairwise slope with minimum variance in
wireless sensor networks. Ad Hoc Netw.,
11(3):765-777, May 2013.

[10] K. S. Yildirim and A. Kantarci. External gradient
time synchronization in wireless sensor networks.
Parallel and Distributed Systems, IEEE
Transactions on, 25(3):633-641, March 2014.

	Introduction
	Method
	Simulation Results
	Discussion and Conclusion
	References

