Adaptive Synchronization of Robotic Sensor Networks

Kasım Sinan YILDIRIM* and Önder GÜRCAN†**

*Department of Computer Engineering, Ege University, Turkey
†CEA, LIST, Laboratory of Model driven engineering for embedded systems, France

International Workshop on Robotic Sensor Networks (RSN 2014)
April, 14th
What time is it?

- Low-cost built-in clocks - \textit{local time notion}
 - A \textit{read-only} counter register
 - A \textit{low-cost} crystal oscillator
 - temperature, voltage level and aging of the crystal
 - \textit{clock drift} - does not generate ticks at the exact speed of real-time.
What time is it?

- Low-cost built-in clocks - **local time notion**
 - A read-only counter register
 - A low-cost crystal oscillator
 - temperature, voltage level and aging of the crystal
 - *clock drift* - does not generate ticks at the exact speed of real-time.

Time Synchronization

Exchange information to calculate a **logical clock** - **common time**
What time is it?

- Low-cost built-in clocks - **local time notion**
 - A **read-only** counter register
 - A **low-cost** crystal oscillator
 - temperature, voltage level and aging of the crystal
 - *clock drift* - does not generate ticks at the exact speed of real-time.

Time Synchronization

Exchange information to calculate a **logical clock** - **common time**

- **Sources of errors**
 - *transmission delay*
 - composed of deterministic and non-deterministic components
 - reception of outdated time information due to delays
 - *frequency* of the built-in clock
 - *quantization errors* - low-frequency built-in clocks
Exchange of Time Information

- **Flooding Time Information**
 - A reference node *floods* its current time *periodically*
 - built-in clock \(\leftrightarrow\) reference time
 - broadcast predicted time - network-wide synchronization

- **Peer-to-Peer Communication**
 - No special reference node
 - Communicate with and synchronize to direct neighbors.
Calculation of the Logical Clock

Least-Squares Regression - PulseSync [Lenzen et al., 2009]

Distributed Averaging - GTSP [Sommer and Wattenhofer, 2009]
Calculation of the Logical Clock

Least-Squares Regression - PulseSync [Lenzen et al., 2009]
Distributed Averaging - GTSP [Sommer and Wattenhofer, 2009]

Adaptive Value Tracking - adaptive and dynamic value searching
Calculation of the Logical Clock

Least-Squares Regression - PulseSync [Lenzen et al., 2009]
Distributed Averaging - GTSP [Sommer and Wattenhofer, 2009]
Adaptive Value Tracking - adaptive and dynamic value searching

AVTS - STSP [Gürcan and Yildirim, 2013, Yildirim and Gürcan, pear]

Algorithm 1. Speed tracking code for robot u
1: if error > 0 then avt$_u$.adjust($f \uparrow$)
2: else if error < 0 then avt$_u$.adjust($f \downarrow$)
3: else avt$_u$.adjust($f \approx$)
High Dynamics of the Network Topology

- Aforementioned protocols
 - periodical and **almost reliable** communication among the nodes.
 - more **noise, collisions and packet losses**?
High Dynamics of the Network Topology

- Aforementioned protocols
 - periodical and **almost reliable** communication among the nodes.
 - more noise, collisions and packet losses?
 - performance evaluation on **static** and **non-mobile** topologies.
 - instantaneously start to receive time information from **badly synchronized** nodes?
 - **dense** and **sparse** areas?
High Dynamics of the Network Topology

- Aforementioned protocols
 - periodical and **almost reliable** communication among the nodes.
 - more noise, collisions and packet losses?
 - performance evaluation on **static** and **non-mobile** topologies.
 - instantaneously start to receive time information from **badly synchronized** nodes?
 - dense and sparse areas?

- It is still unknown whether the existing solutions are still applicable under **mobile network dynamics** or not:
High Dynamics of the Network Topology

- Aforementioned protocols
 - periodical and almost reliable communication among the nodes.
 - more noise, collisions and packet losses?
 - performance evaluation on static and non-mobile topologies.
 - instantaneously start to receive time information from badly synchronized nodes?
 - dense and sparse areas?

- It is still unknown whether the existing solutions are still applicable under mobile network dynamics or not:

Our Question

Are networked robots still be able to adapt themselves and self-adjust their logical clocks while meeting the pre-defined synchronization performance?
Simulations

- Implemented PulseSync, GTSP, AVTS and STSP in our simulator.
- 300x300 meter square area, Transmission range - 25 meters.
- Probabilistic radio model (Gaussian wireless channel) with CSMA based MAC layer.
- Beacon period of 30 seconds.
- **Random Waypoint Mobility Model**
- 1 MHz built-in clocks with *constant drift clock model* (drift is uniformly distributed within the interval of ± 100 ppm).
- The least-squares regression tables are *composed* of 8 entries and each node tracks at most 10 neighbors.
Results

Flooding-based AVT

PulseSync

Peer-to-peer AVT

GTSP

Maximum Global Skew — Average Global Skew
Lessons Learned

- **PulseSync**
 - all of the network *should be connected* at *pulse* times
- In contrast, in AVT synchronization
 - the network *do not require to be connected* at *pulse* times
Lessons Learned

- **PulseSync**
 - all of the network should be connected at pulse times
- In contrast, in AVT synchronization
 - the network do not require to be connected at pulse times
- **GTSP**
 - **keep track** of their neighboring robots
 - which neighbors to keep track and which ones to discard in dense areas
 - detection of the neighborhood change is another crucial problem
 - **not suitable** for mobile robotic networks and exhibits a poor performance
- In contrast, in AVT synchronization
 - does not require to keep track of the information of the neighboring robots
 - update their time information regardless of the identity of the sender
Lessons Learned

- **PulseSync**
 - all of the network *should be connected* at *pulse* times

- In contrast, in **AVT synchronization**
 - the network *do not require to be connected* at *pulse* times

- **GTSP**
 - *keep track* of their neighboring robots
 - which neighbors to *keep track* and which ones to *discard* in *dense* areas
 - detection of the *neighborhood change* is another crucial problem
 - *not suitable* for mobile robotic networks and exhibits a poor performance

- In contrast, in **AVT synchronization**
 - *does not require to keep track* of the information of the neighboring robots
 - update their time information *regardless of the identity* of the sender

- **Peer-to-peer** approaches are expected to have a better performance in mobile networks.

- However, **flooding-based options perform better** and **establishes** network-wide synchronization **faster**!
Future Questions

- What happens if the reference node dies?
 - Reference node election?

- How to achieve gradient time synchronization faster and better?

- How to separate stable and unstable nodes?
 - Synchronize to well-synchronized nodes?
THANK YOU!
References

Gürcan, Ö. and Yildirim, K. S. (2013).
Self-organizing time synchronization of wireless sensor networks with adaptive value trackers.
In *Self-Adaptive and Self-Organizing Systems (SASO), 2013 IEEE Sixth Int. Conf. on*, pages 91–100.

Optimal clock synchronization in networks.

Gradient clock synchronization in wireless sensor networks.

Efficient time synchronization in a wireless sensor network by adaptive value tracking.

Wireless Communications, IEEE Tran. on.