
Taskify: An Integrated Development Environment to
Develop and Debug Intermittent Software

for the Batteryless Internet of Things
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Abstract—Batteryless embedded devices rely only on ambi-
ent energy harvesting that enables stand-alone and sustainable
applications for the Internet of Things. These devices perform
computation, sensing, and communication when the harvested
ambient energy in their energy reservoir is sufficient; they die
abruptly when the energy drains out completely. This kind of
operation, the so-called intermittent execution, dictates a task-
based programming model for the development and implemen-
tation of intermittent applications. However, today’s task-based
intermittent programs are tightly-coupled to the underlying run-
time environments. This makes their debugging and testing
difficult before deploying them into the target platform. To
remedy this, we present Taskify, a tool that enables engineers to
write and debug task-based intermittent programs in TaskDSL,
i.e., a domain-specific language we designed for the development
of intermittent programs on any general-purpose computer. Task-
ify automatically transforms these programs into C programs
that can be linked to the underlying run-time environment and
deployed into the target platform. Taskify is implemented as
an Eclipse plugin. It has been evaluated on three intermittent
applications.

Index Terms—Energy Harvesting, Intermittent Software, Bat-
teryless, Tool, Debugger

I. INTRODUCTION

Radio Frequency (RF)-powered computers emerged with
the recent advancements in RF harvesting circuits and micro-
controllers having ultra-low power requirements [1], [2].
These computers operate without batteries and enable stand-
alone and sustainable applications for the Internet of Things
(IoT) [1]–[3]. In particular, embedding IoT devices in the
human body, in everyday items like clothes or inhospitable
locations are now feasible with batteryless operation [4].

A typical RF-powered computer, e.g. WISP [5], is equipped
with an ultra-low-power micro-controller, several sensors, a
non-volatile secondary memory (FRAM [6]), and a capacitor
for energy storage. These computers sense, compute and
communicate when the harvested energy in the capacitor is
sufficient; they die abruptly when the capacitor drains out
completely. Due to unpredictable ambient energy sources [7],
power failures may reach a rate of 10 times per second [8], [9].
Upon power failure, the volatile state, i.e., the general and spe-
cial purpose registers of the micro-controller and the content
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int data[N]; 
features_t f;
activity_t a;

void main(){
 while(1){
  for(int i=0; i<N; i++){
    data[i] = sample();
  }
  transform(data);
  f= featurize(data); 
  a = classify(data);
  ...;
 }
}

Sample Application

Time (s)

On Time

sample featurizetransform

Power Failure

On Time

featurize classify

En
er

gy

Intermittent Execution

Tha tasks are  restarted upon power failures.

transform

t3

t4

t5

featurize

t6

t7

sample

t1
t2

classify
t9 t10

t12t11

t8

Fig. 1. Software designed for continuously-powered systems cannot progress
on intermittent computers. Engineers need to split the computation into a set
of tasks that can run within the energy stored in the energy reservoir. The tasks
have all-or-nothing semantics and they can be restarted upon power failures
without any side effects.

of the volatile memory, is lost but the non-volatile state, i.e.,
the content of FRAM, persists. Frequent power failures lead to
an inherently intermittent execution for the software running
on these computers. However, during intermittent execution of
programs, the following problems arise:

• the progress of computation might not be guaranteed due
to the frequent loss of the volatile state [10];

• the re-execution of the software upon recovery from a
power failure might lead to either semantically incorrect
results due to the corrupted non-volatile state [11] or to
a system crash [12].

There is an ample body of recent work addressing these
problems. They can be investigated under two categories:
checkpointing-based and task-based systems. Checkpointing-
based systems [8], [13]–[17] simply log the volatile state of



the computation in persistent memory by placing checkpoints.
Upon power failure, the computation continues from the latest
checkpoint. However, checkpoints introduce non-negligible
overhead since their time and energy cost grow with the size
of the volatile state.

Task-based systems [12], [18]–[20] introduce considerably
less overhead by introducing a static task model for program-
ming intermittent computers (see Fig. 1). These systems enable
engineers to decompose their programs into a collection of
tasks at compile time. Engineers also identify the control-
flow and how the data is shared and manipulated by the
tasks. The tasks have atomic all-or-nothing semantics so that
their re-execution does not leave non-volatile memory in
an inconsistent state—task-based systems ensure the atomic
completion of the tasks despite arbitrary power failures.

A. Problem Statement

Ensuring the functional correctness of task-based applica-
tions, and in turn debugging intermittent systems, is a burden
for engineers. This is due to the following reasons:

• Splitting the computation into several tasks and iden-
tifying the control-flow and data sharing/communica-
tion among the tasks require a significant developer
effort [17]. This procedure is also error-prone. On the
other hand, it is time-consuming to verify if the task
splitting is done correctly and if the task-based program
is functionally correct.

• Task-based intermittent programs are written by using
the programming constructs provided by the hardware-
dependent run-time environments [12], [18]–[20]. There-
fore, they are tightly coupled to the underlying environ-
ment, and engineers can debug them only after deploying
them into the target hardware platform. To the best of our
knowledge, there is no tool support for debugging and
testing these applications before their deployment.

B. Contributions

In this paper, we present a tool, Taskify, which supports im-
plementation, testing, and debugging of task-based intermittent
programs on a general-purpose computer. Taskify provides the
following features: (i) implementing computation-based inter-
mittent programs using a domain-specific language (DSL), (ii)
debugging the programs without deploying them into a target
platform, and (iii) automatically transforming the programs
written in the DSL into C programs linked to a task-based
run-time environment. As part of Taskify, we provide a DSL,
i.e., TaskDSL that supports a general task-based programming
model while hiding the details of the existing task-based
run-times. With the debugger for TaskDSL, Taskify enables
engineers to catch and eliminate bugs and wrong control-
flow declarations in the programs written in TaskDSL. The
programs in TaskDSL are automatically transformed into C
programs that can be linked to InK [19], i.e., a de facto task-
based run-time environment. The generated C programs can
be deployed into a target hardware platform to be executed
despite frequent power failures. Taskify is implemented as

an Eclipse plugin. It has been evaluated on three intermittent
applications.

This paper is structured as follows. Section II provides
the background on which Taskify is built. In Section III, we
describe our tool, while Section VII gives the implementation
details of the tool. Sections IV, V and VI provide the details of
its core technical parts. Section VIII reports on our evaluation
with case studies. Section IX presents a reflection on our tool.
In Section X, we conclude the paper.

II. BACKGROUND & RELATED WORK

A newly emerged class of embedded sensors can operate
solely on ambient [1], [2], [21] and/or dedicated wireless
energy [22], [23]. The main components of such sensors are:
(i) an energy harvester (converting ambient energy into electric
current), (ii) low-power computing module with on-board
non-volatile data storage, and (iii) low power communication
module—ideally by means of (ambient) backscatter [24]. Typ-
ical examples of such sensors are Wireless Identification and
Sensing Platform (WISP) [25], which is powered wirelessly
by the distant RFID reader, and Flicker [26] that can be pow-
ered using several configurations from solar to piezoelectric
energy harvesting. These platforms comprise an FRAM-based
ultra-low-power micro-controller from Texas Instruments, e.g.,
MSP430FR5969 [27], that uses a combination of volatile
(e.g., SRAM) and non-volatile (e.g., FRAM) memory. FRAM
memory can be used to store information that persists upon
power failures.

A. The Progress of Computation and Memory Consistency
The energy availability from (ambient) energy harvesting

is unpredictable and minuscule [28]. An example trace of
energy availability from RFID reader to WISP tag (at a 2 m
distance) is given in [8]—only ≈100 ms in a period of 250 s
the WISP was actively powering the microcontroller from
the RFID reader. This shows that the frequent loss of the
computation state is an inevitable phenomenon, which is also
justified by the distribution of computation cycles available
for WISP during regular energy harvesting operation [29].
Therefore, to be able to progress the computation from where
it leaves after each power failure, engineers need to design
systems that cope with such failures.

The restart of a computation block after a power interrupt
can be catastrophic and exhibit side-effects [11] (denoted as
non-volatile memory inconsistency). On a high level, when
sensor needs to execute an operation that has Write-After-
Read dependency on a variable stored in non-volatile memory
(for instance {x++; vector[x]=v;}) and if the power
failure occurs after x++, the computation block might be
restarted that leads value x to be increased twice, introducing
an inconsistency.

B. Intermittent Computing Approaches
There are two main approaches that ensure the progress

of computation and memory consistency of intermittent pro-
grams. In checkpointing approaches, a program is instru-
mented, either by an engineer or a compiler, with instructions



1 // task-shared variables.
2 __shared(int data[10]; int i;);
3 // the entry task
4 ENTRY(Start){
5 // sample sensor
6 int read = sample();
7 // data[i] = read
8 __SET(data[__GET(i)],read);
9 ...

10 NEXT(Last); // next task is Last
11 }
12
13 TASK(Last){
14 ...
15 NEXT(null); //task finishes
16 }

Fig. 2. Pseudo code of an InK application.

to save (or checkpoint) the program state in non-volatile mem-
ory [8], [15]–[17]. In general, the program state contains the
general and special-purpose registers of the micro-controller
and the content of the volatile memory, i.e., the program stack.
Therefore, checkpointing causes considerable overhead and
prolongs program execution time. It can be performed dynam-
ically at run-time by monitoring the supply voltage and check-
pointing the program if the measured voltage level is under a
predefined threshold. Voltage monitoring is however costly in
terms of energy expenditure (naturally, measuring energy has
a non-negligible energy cost). If other than conventional ADC
measurement circuits are needed, the hardware cost is also
non-negligible. A task-based programming model that requires
engineers to structure their program into idempotent tasks and
that provides access to the non-volatile memory through input-
output channel abstractions between tasks is first proposed
by Colin et al. [12]. Following this study, several task-based
run-times are proposed [18]–[20], [30]. These studies showed
that, from an energy perspective, the task-based programming
model is a structured and more efficient way than checkpoint-
ing. Among the proposed run-times, we consider the most
recent task-based run-time, InK [19].

C. InK Task-Based Run-time Environment

InK requires the engineer to divide the computation into
tasks and define the task-shared variables and the control flow.
An InK application is a C file that is developed using the C
macro definitions provided by the InK library. Fig. 2 shows
the code of a sample InK application. In InK, __shared
keyword is used to declare persistent variables shared among
tasks (Line 2). ENTRY defines the first task in the computation
(Lines 4-11). Successive tasks are implemented using TASK
blocks (Lines 13-16). NEXT is used to switch control to the
corresponding task (Lines 10 and 15). __GET and __SET
are used to manipulate task-shared variables (Line 8). InK
application is compiled by the C compiler and linked with the
static InK library to be deployed into the target hardware.

InK employs static versioning via double buffering. In InK,
task-shared variables are allocated in non-volatile memory by
creating two versions of each variable. When a task is being

executed, InK run-time also creates a scratch copy (a third
version) of each shared variable the task modifies, so that the
original copies in non-volatile memory remain unmodified.
Before task execution, the original versions of the variables
are loaded into those scratch copies. During task execution,
only scratch copies are modified. Upon power failure, the
task can safely be restarted since the original values of the
shared variables remain unchanged. Upon successful comple-
tion of the task, the scratch copies in volatile memory are
first copied into the temporary buffer in non-volatile memory
(commit phase 1). Then, the values in the temporary buffer
are copied into the original buffer so that the values of the
task-shared variables are updated (commit phase 2). Commit
phase 2 can be restarted upon a power failure without causing
any memory inconsistency since there is no write-after-read
dependency during the copy operation. After commit phased
2 is finished, the next task in the control flow is executed.
The aforementioned operations ensure the atomic completion
of the tasks and the consistency of the task-shared variables.

D. Tools, Debuggers and Testbeds for Intermittent Systems

There are tools, debuggers, and testbeds proposed for bat-
teryless and intermittent systems in the literature. For instance,
Hester et al. [31] proposed hardware recording the energy
patterns of energy harvesting environments. The hardware also
replays the recorded energy pattern to observe the behav-
ior of the batteryless applications on target hardware. Colin
et al. [32] proposed a hardware/software tool that supports
debugging applications during their intermittent execution on
a target platform without interfering with their energy level.
Surbatovich et al. [33] proposed a program analysis tool for
detecting I/O-related bugs at compile time. Geissdoerfer et
al. [34] proposed a testbed of several batteryless devices
that can record and replay the energy characteristics of en-
vironments. To the best of our knowledge, Taskify is the
first tool that supports catching bugs related to task-splitting
and functional correctness of computation-based applications
before target deployment.

III. TASKIFY: TOOL OVERVIEW

The process in Fig. 3 presents an overview of our tool.
In Step 1, Write the Task-based Program using TaskDSL, the
engineer writes a task-based intermittent program on a general-
purpose computer. To do so, Taskify provides TaskDSL, with
a custom Eclipse editor, which hides the details of the existing
task-based run-time environments. The output of Step 1 is a
TaskDSL specification.

Once the engineer writes the task-based intermittent pro-
gram, in Step 2 (Debug the Task-based Program written in
TaskDSL), Taskify supports debugging of the program to catch
and eliminate bugs and wrong control-flow declarations in
the program. The output of Step 2 is a bug-free TaskDSL
specification.

In Step 3, Generate C Program from TaskDSL Program,
Taskify automatically transforms the program written in



shared{
 int data[N]; 
 ...
}

entry task sample{
 for(int i=0; i<N; i++){
  data[i] = sample();
 }
 next transform;
}

task transform{
 ...
 next featurize;
}
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shared{
 int data[N]; 
 ...
}

entry task sample{
 for(int i=0; i<N; i++){
  data[i] = sample();
 }
 next transform;
}

task transform{
 ...
 next featurize;
}
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i = 5
data[0] = 0xff;
...
  

Trace Variables

__shared(int data[N];…)

ENTRY(sample){
 for(int i=0; i<N; i++){
  __SET(data[I]) = sample();
 }
 NEXT(transform);
}

TASK(transform){
 ...
 NEXT(featurize);
}
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Fig. 3. Taskify Tool Overview. Engineers can develop and debug the task-
based intermittent software on a general purpose computer. The developed
task-based application is automatically transformed into an InK program that
is compatible to be linked with the InK library.

TaskDSL into C program which can be linked to an underlying
run-time. Steps 1, 2 and 3 are directly supported by Taskify.

In Step 4, Link and Compile the Generated C Code, the
engineer first links the generated code to InK [19] and then
compiles it. In Step 5, Deploy the Intermittent Program to a
Target Platform, the engineer deploys the compiled C program
into a target device. In the rest of the paper, we elaborate each
step in Fig. 3 using an example intermittent program written
in TaskDSL.

IV. SPECIFICATION OF TASK-BASED INTERMITTENT
PROGRAMS

As the first step, the engineer writes the task-based intermit-
tent program using TaskDSL supported by our custom Eclipse
editor in Taskify. TaskDSL captures the basic programming
constructs in order to represent a task-based programming
model; it is aligned with the InK run-time environment [19].
These programming constructs enable the declaration of (i)
code blocks that are executed atomically, (ii) variables that
are shared by the atomic code blocks, and (iii) control-flow
that determines the progress of the computation.

Fig. 4 shows part of the TaskDSL metamodel. In this
metamodel, TaskApp represents an intermittent program
that executes multiple tasks. Task represents an arbitrary
computation that has all-or-nothing semantics. This com-
putation can be interrupted by arbitrarily-timed power fail-
ures. Upon power failure, the task is restarted by rolling

Fig. 4. Part of the TaskDSL Metamodel.

back all the modifications it has done in the memory. The
first task to be executed in the intermittent program is an
EntryTask, while NextTaskExpression refers to the
next task to be executed in the intermittent program. Task
includes TaskBody which contains the computation of a
task. The computation of a task manipulates shared variables,
which are represented by SharedVariableExpression.
Shared variables can be seen as a communication mecha-
nism among tasks. All shared variables are declared under
SharedVariablesBlock. Underlying run-time environ-
ments allocate non-volatile memory to the variables in this
block. These variables are also versioned by employing a
double-buffering scheme [12], [19], so that tasks manipulate
scratch variables (see Section II-C) instead of their original
versions. Upon successful completion of the task, the values of
scratch variables are atomically committed to the original ver-
sions of these variables. If the task execution is interrupted by
a power failure, the original variables remain unchanged—the
memory, and, in turn, the task-shared variables are always kept
in a consistent state. ConstantVariableExpression
represents a constant variable in the program. Apart from
task definitions, an intermittent program can have functions
(FunctionDefinitionExpression) which are called
by tasks. These functions are not allowed to read and write
task-shared variables; they can only process their parameters
and return values.

A sample program in TaskDSL is presented in Fig. 5.
The metamodel in Fig. 4 is reflected via keywords task,
entry, SHARED, CONSTANT, next and end in Fig. 5.
Tasks are implemented within task code blocks (Lines 20-28
and 30-35 in Fig. 5). Tasks communicate with each other by



Fig. 5. A sample TaskDSL specification.

manipulating task-shared variables declared within SHARED
block (Lines 4-8). Currently, TaskDSL supports string, integer,
float and boolean data types and array definitions. CONSTANT
keyword is used to define constant (read-only) variables with
a global scope (Line 1). The example program has two
tasks, i.e., t_init and use_shareds. The first task to be
executed is specified by entry keyword (Line 20). This task
initializes task-shared variables operand1 and operand2
to be multiplied. The result is stored in task-shared variable
result (Line 24). The second task adds task-shared variables
operand2 and result and stores the result in result
(Lines 30-35). TaskDSL supports reusable functions that can
be called from tasks. These functions cannot manipulate
task-shared variables; they can only return values to tasks.
Multiplication and addition operations in tasks t_init and
use_shareds are performed with functions add and mult
(Lines 10-13 and 15-18).

The control flow is specified via keywords next and end
(Lines 27 and 34). next is used to finalize the corresponding
task and switch to the next task. end is used to finish
computation and return control to the run-time environment.

V. DEBUGGING OF INTERMITTENT PROGRAMS IN
TASKDSL

The engineer debugs the intermittent program in TaskDSL
to catch and eliminate bugs, e.g., mistakes in the control flow
(Step 2 in Fig. 3). Taskify debugger enables the execution
and tracing of variables of TaskDSL programs on a general-
purpose computer before the target hardware deployment. To
this end, Taskify debugger implements execution procedures
for all the elements of TaskDSL metamodel partially repre-
sented in Fig. 4. Taskify debugger generates an abstract syntax
tree (AST) of the program written in TaskDSL. The generated
AST is traversed to call the corresponding procedures of the
nodes in the AST.

Fig. 6 shows the debugging environment in Taskify. The
top-left window lists variables and their current values during
debugging, while the middle-left window highlights break-
points in the TaskDSL specification. The bottom-left window
in Fig. 6 shows the current task in the control flow.

VI. GENERATION OF C CODE USING INK LIBRARY FROM
TASKDSL SPECIFICATIONS

TaskDSL specifications are automatically transformed into
C code using the InK run-time library (Step 3 in Fig. 3). For
each element of the TaskDSL metamodel in Fig. 4, we imple-
mented the necessary routines that generate the corresponding
C code. Taskify traverses AST of the intermittent program
in TaskDSL, whose nodes are elements in the TaskDSL
metamodel. During the traversal, the code generation routines
for each AST node is executed.

Fig. 7 shows the C code generated from the example
TaskDSL specification in Fig. 5. The generated code includes
the InK library (Line 1 in Fig. 7). The generation of C code
from TaskDSL is quite straightforward for some of the meta-
model elements in Fig 4 such as SharedVariablesBlock
and SharedVariableExpression (Lines 4-8). For each
task in the TaskDSL specification, Taskify automatically gen-
erates task declarations using the InK library (Lines 10-
11). Since the InK run-time environment requires an ini-
tialization procedure, Taskify generates initialization routine
thread1_init (Lines 13-17) in which an InK thread is cre-
ated via CREATE and the thread is started via SIGNAL calls.
A C function is generated for each function in the TaskDSL
specification (Lines 19-27). Finally, Taskify generates the task
bodies (Lines 29-34 and 36-39). The generated tasks read and
write task-shared variables via interfaces __GET and __SET
in InK. Taskify inserts calls to these interfaces in order to
manipulate task-shared variables (Lines 30-32 and Line 37).

VII. TASKIFY: IMPLEMENTATION & AVAILABILITY

Taskify has been implemented as an Eclipse plug-in. This
plug-in activates the user interfaces of Taskify and provides the
features writing a task-based intermittent program, debugging
the task-based program on a general-purpose computer, and
generating C code from programs in TaskDSL.

We used Xtext framework [35], i.e., an open-source software
framework for developing programming languages and DSLs,



Fig. 6. A screenshot of Taskify integrated development. Taskify IDE enables the Eclipse integrated development of TaskDSL application, single-step execution
of the TaskDSL program, placing breakpoints and enabling engineers to trace task-shared variables.

to develop TaskDSL. Taskify relies upon a customized Eclipse
editor to write and debug task-based intermittent programs
using TaskDSL.

Eclipse provides a debug framework supporting interfaces
for a language-independent debug model [36]. The debug
framework provides common debugging features. We used this
framework to implement Taskify debugger in Java.

We used Xtend [37], i.e., a general-purpose high-level
programming language for the Java Virtual Machine, to im-
plement the automated generation of C code from intermittent
programs written in TaskDSL. The Xtext project that is used
to develop TaskDSL includes an empty generator stub. This
stub is extended to generate C code for each entity in the
TaskDSL metamodel. Xtext provides an AST of the program
in TaskDSL.

Taskify is approximately 4500 lines of code, excluding
comments and third-party libraries. Additional details about
Taskify, including executable files and a screencast covering
motivations, are available on the tool’s website at:

https://github.com/tinysystems/Taskify

VIII. EVALUATION

Our goal was to assess the benefits of intermittent program
development with Taskify. Our evaluation aimed to answer the
following research questions (RQs):

• RQ1. Does the tool reduce the cost of the intermittent
program development?

TABLE I
THE NUMBER OF LINES AND THE SIZE OF THE .TEXT, .BSS AND .DATA

SECTIONS OF THE APPLICATIONS.

Section size (bytes)
Application Type Lines .text .data .bss

Bit Count InK Repo. 380 2707 316 4592
Taskify 326 3616 347 5412

Cuckoo Filt. InK Repo. 500 3106 349 4864
Taskify 370 3748 347 5424

Cold Chain InK Repo. 370 2628 316 11276
Taskify 276 2830 316 18264

• RQ2. Does the generated C code have less code size and
memory requirements compared to manually developed
C code?

• RQ3. Does the generated C code run correctly on the
target platform?

To answer the RQs above, we implemented three applica-
tions in Taskify, which are commonly used for benchmark-
ing [12], [19]. These applications are (i) Bitcount counting bits
in a random string, (ii) Cuckoo Filtering that runs a cuckoo
filter over a set of pseudo-random numbers and performs the
sequence recovery using the same filter, and (iii) Cold-Chain
Equipment Monitoring emulating a temperature sensor data
with a pseudo-random number, which is later compressed
using the LZW algorithm [38].



1 #include "ink.h"
2 #define factor 7
3 // Define task-shared persistent variables.
4 __shared(
5 uint32_t operand1;
6 uint32_t operand2;
7 uint32_t result;
8 )
9 // Declare tasks that will be implemented

10 ENTRY_TASK(t_init);
11 TASK(use_shareds);
12 // Called at the very first boot
13 void thread1_init(){
14 // create a thread with entry task
15 __CREATE(15, t_init);
16 __SIGNAL(15);
17 }
18 // Define helper functions
19 int add (uint32_t val1, uint32_t val2) {
20 uint32_t res = val1 + val2;
21 return res;
22 }
23
24 int mult (uint32_t val1, uint32_t val2) {
25 uint32_t res = val1 * val2;
26 return res;
27 }
28 // Implementation of all tasks
29 ENTRY_TASK(t_init) {
30 __SET(operand1, 3);
31 __SET(operand2, 12);
32 __SET(result, mult(__GET(operand1), factor));
33 return use_shareds;
34 }
35
36 TASK(use_shareds) {
37 __SET(result,add(__GET(result),__GET(operand2)));
38 return NULL;
39 }

Fig. 7. InK Code generated from the TaskDSL Specification in Fig. 5

a) RQ1: We observed that intermittent program devel-
opment in Taskify is less time-consuming and error-prone
compared to manual development of C code using the InK
run-time library. TaskDSL hides the details of the InK library
from the engineer, while the engineer only focuses on splitting
the computation into a set of tasks. He/she defines the control
flow and identifies task-shared variables without dealing with
the InK library declarations and interfaces. With Taskify, we
eliminated most of the syntax errors while coding the three
applications in TaskDSL. In addition, we eliminated all bugs
related to the functional correctness before the target deploy-
ment of the applications. Compared to the three applications
in the InK repository [39], our corresponding applications in
TaskDSL have less number of code lines (see Table I).

b) RQ2: Code size and memory requirements of the gen-
erated codes are slightly worse than those of the applications
in the InK repository (see Table I). The current implementation
of TaskDSL does not support a data type for data type char in
C. Therefore, all variables in TaskDSL occupy 4 bytes, which
leads to an increased code size and memory requirements. To
solve this issue, we plan to support a data type of 1 byte.

c) RQ3: To check whether the generated C code runs
correctly on the target platform, we linked the generated
code to the InK run-time to be deployed into TI MSP-
EXPFR5969 evaluation board [40]. We observed that all three
applications produce the desired outputs, which also justifies
the correctness of Taskify’s code generation feature.

IX. REFLECTIONS ON TASKIFY

In this section, we discuss the limitations of Taskify and its
prospective features.

a) I/O-based Applications: Taskify currently supports
only the development and debugging of computation-based
applications, i.e., programs without any peripheral interaction.
On the other hand, most of the sensing applications are I/O
driven. In order to develop and debug I/O-based applications
in Taskify, I/O operations should be captured by specific
keywords in TaskDSL. In addition, test scaffold code, i.e.
code that mimics hardware-dependent operations, should be
implemented by the engineers.

b) Other Runtimes: Taskify currently generates code
only for the InK environment. We expect code generation
for Alpaca [20] to be similar since Alpaca shares similar
programming abstractions with Ink. In other environments
such as Chain [12] and Mayfly [18], tasks communicate with
each other to manipulate non-volatile memory via the so-called
channel abstractions. Therefore, code generation for a channel-
based runtime environment requires that channel connections
among tasks be structured for each task to read the outputs of
the predecessor task and to write to the inputs of the successor
task—quite different than code generation for InK.

c) Checking Program Behavior: Power traces recorded
from testbeds [34] can be used by Taskify to simulate and
check program behavior with real power failures before target
deployment. To this end, model reasoning tools, e.g., [41], can
be integrated into Taskify.

X. CONCLUSIONS AND FUTURE WORK

We presented a tool, Taskify, that supports the specification
and debugging of task-based intermittent programs before their
deployment into a target platform. The key characteristics of
our tool are (1) allowing engineers to develop intermittent
programs using TaskDSL, a DSL hiding the details of the
existing run-time environments, (2) enabling engineers to
catch and eliminate bugs and wrong control-flow declarations
in the programs written in TaskDSL, and (3) automatically
generating executable C code for an underlying run-time
environment from the programs in TaskDSL. Taskify has been
evaluated over three intermittent applications. The evaluation
shows that our tool is practical and beneficial to develop
task-based intermittent programs and debug them before their
deployment into a target platform. We plan to (i) conduct
more case studies to better evaluate the practical utility and
usability of the tool, (ii) generate transformations for other
run-time environments such as Chain [12], (iii) develop a
testing environment that uses prerecorded power traces from
real testbeds to test intermittent programs with different power



traces, and (iv) extend TaskDSL for developing I/O-based
intermittent applications.
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